Showing posts with label dark matter. Show all posts
Showing posts with label dark matter. Show all posts

Sunday, March 11, 2007

A history of the discovery of Dark Matter & Dark Energy

Out There

by Richard Pannek

Saturday, February 17, 2007

Mystery of Galaxies Full of Dark Matter Solved

February 16, 2007 Small galaxies' visible gas may have been scoured away by million-degree coronas of nearby big galaxies By JR Minkel

Science Image: dwarf galaxies Image: COURTESY OF STELIOS KAZANTZIDIS GONE DARK? Simulations of galaxy formation indicate that the Milky Way and other large galaxies should be surrounded by numerous smaller galaxies [right]. New work hints that these missing galaxies may be full of dark matter and therefore difficult to spot.

reposted from: SciAm
my highlights / emphasis / comments

Researchers may have explained why a few tiny galaxies around the Milky Way and the Andromeda galaxies are so rich in dark matter, the invisible stuff that makes up most of the matter in the universe. The key seems to be the bigger, brighter galaxies next door. Simulations indicate that million-degree coronas around these larger galaxies could have scoured away much of the visible gas in their young neighbors while leaving the dark material behind.

Researchers believe that all galaxies large and small should have started out the same—as a ball of dark matter with a disk of visible matter in the center. But some small galaxies, called dwarf spheroidals, are relatively dark for their size; a handful contain roughly 100 times more dark matter per star than the Milky Way and are a million times less luminous. They also tend to cluster around bigger galaxies such as our own. The big question is why.



In new simulations of galaxy formation, Lucio Mayer of the University of Zurich and his colleagues find that, 10 billion years ago, the darkest of today's spheroidals (such as Draco, Ursa Minor and Andromeda IX) were forming around big galaxies from the same mix of visible gas and dark matter, much like planets would form around a star. But they happened to get pulled into orbit around the central galaxy earlier than their counterparts. Once there, according to the group's simulations, shocks from the central galaxy's gravity, and pressure from the hot corona around it, combined to knock loose most of the smaller galaxies' shimmering gas. Only a few remaining stars studded each blob of dark matter. Ultraviolet radiation, which permeated the universe at the time, would have heated the spheroidals' visible gas, leaving it weakly attracted to the little galaxies and thus easy to scrape away, the group reports in this week's Nature. The model is the first to explain why the spheroidals would be both dark and found near bigger galaxies, says co-author Stelios Kazantzidis of Stanford University.

The researchers "do a good job of simulating all of the relevant physics and setting the orbits" of the dwarfs, says astrophysicist James Bullock of the University of California, Irvine. "They make the case that the Milky Way has very likely stripped the gas (and the 'life') out of many of the dwarf galaxies we see around us."

Kazantzidis says the result may also explain why bigger galaxies have many fewer dwarfs around them than the reigning model of "cold," or slow-moving, dark matter would suggest. Other spheroidals may have received a larger dose of the same gas-stripping process, leaving them even less visible and waiting to be discovered.

RELATED LINKS: A Universe of Disks The Search for Dark Matter Does Dark Matter Really Exist? Dwarf Galaxies and Starbursts What's the Matter?

Monday, January 08, 2007

the nature of dark matter, dark energy, the cyclic universe, gravitational waves

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

PAUL STEINHARDT
Physicist; Albert Einstein Professor of Science, Princeton University; Coauthor, Endless Universe: A New History of the Cosmos

Bullish on Cosmology

I am optimistic that there will be a historic breakthrough in our understanding of the universe in the next five years that will be remembered as one of the most significant of the millennium. I would also give better-than-even odds that there will be more than one discovery of this magnitude.

My optimism is sparked by a remarkable coincidence: the simultaneous maturing of several unrelated technologies, each of which could open a new window on the cosmos. Historically, every new technology is a harbinger of great discovery. Consider, then, that at least a handful of major advances will occur within just five years:

• Directly detecting of dark matter:

After decades of gradual progress, physicists will finally build the first detectors sensitive enough to detect dark matter particles directly, if they consist of weakly interacting massive particles (WIMPs), as many physicists suspect.

• Discovering the nature of dark energy:

Although their names sound similar, the only quality dark matter and dark energy have in common is that they are both invisible. Dark matter consists of massive particles that gravitationally attract one another and clump into clouds that seed the formation of galaxies.

Dark energy is gravitationally self-repulsive, so it tends to smooth itself out. When it is the dominant form of energy, as it is today, dark energy causes the expansion of the universe to speed up.The composition of dark energy is one of the great mysteries of science, with profound implications for both fundamental physics and cosmology.

Over the next five years, arrays of novel wide-field telescopes will be constructed that are programmed to rapidly scan large fractions of the sky to search for astronomical phenomena that vary rapidly with time. The arrays will be used to search for distant supernovae (exploding stars), whose brightness and colors can be used to judge the distance and recessional speed of their host galaxies. From these measurements, astronomers can measure precisely the accelerated expansion of the universe, a primary means of distinguishing different theories of dark energy.

At the same time, in the laboratory, physicists will be trying to detect changes in the gravitational force when masses are placed at close proximity or tiny changes in the strength of the electromagnetic force with time, other effects predicted by some theories of dark energy. These measurements will significantly narrow the candidates for dark energy, perhaps identifying a unique possibility.

• Exploring the big bang and the origin of the large-scale structure of the universe:

The conventional wisdom is that the universe sprang into existence 14 billion years ago in a big bang and that a period of exponentially rapid inflationary expansion accounts for its large-scale structure. However, the last decade has seen the emergence of alternative possibilities, such as the cyclic model of the universe.

In the cyclic model, the big bang is not the beginning but, rather, an event that has been repeating every trillion years, extending far into the past. Borrowing ideas from string theory, the cyclic model proposes that each bang is a collision between our three-dimensional world and another three-dimensional world along an extra spatial dimension. Each bang creates new hot matter and radiation that begins a new period of expansion, cooling, galaxy formation and life, but space and time exist before and after the bang.

The large-scale structure of the universe and the pattern of galaxies are set by events that occurred about a cycle ago, before the bang, just as events occurring today are setting the structure for the cycle to come. Although the inflationary and cyclic pictures predict distributions of galaxies, matter and radiation that are indistinguishable, their predictions for the production of gravitational waves in the early universe are exponentially different.

Gravitational waves are ripples in space produced during inflation or near the beginning of a new cycle that propagate through the universe and distort space like undulations traveling through jello. These cosmic gravitational waves are too weak to be detected directly, but experimental cosmologists throughout the world are mounting ground- and balloon-based experiments to search for their imprint on the polarization pattern of cosmic microwave background radiation produced in the first 380,000 years after the bang.

The results will not only affect our view of our cosmic origin, but our future as well. The conventional big bang inflationary theory predicts our universe is headed towards the cold oblivion of eternal expansion—a whimper—but the cyclic model predicts a new hot big bang.

• Direct detecting gravitational waves:

The first window on the universe using something other than electromagnetic waves could be open within the next five years. After decades of developments, the LIGO (Laser Interferometer Gravitational Wave Observatory), with one detector in Livingston, Louisiana, and one in Hanford, Washington, has a plausible chance of directly detecting gravitational waves, beginning a new era in astronomy.

The observatory is designed to detect stlronger gravitational waves than those produced in the early universe, such as waves generated by the violent collision of neutron stars and black holes in our own galaxy. However, this frontier is so fresh and unexplored that there could well be unanticipated cosmic sources of strong gravitational waves to be discovered that could cause us to reassess our understanding of the universe.

• Breakthroughs in fundamental physics and direct production of dark matter:

The Large Hadron Collider at the Center for European Research (CERN) in Geneva, Switzerland, is set to begin operation this year. This facility consists of a powerful particle accelerator that will reproduce collisions of the type that occurred within the first pico-second after the big bang, carrying the investigation of fundamental physics over an important energy threshold where new phenomena are anticipated. For example, physicists hope to discover a spectrum of new "supersymmetric" particles, confirming a key prediction of string theory, and also WIMPs that may comprise the dark matter.

The impact will be profound. As we enter 2007, we understand the composition of less than five percent of the universe; we do not understand how space, time, matter and energy were created; and we cannot predict where the universe is headed. In the next five years, we may witness the historic resolution of one or more of these issues. I have my personal bet on what the individual outcomes will be; but the only prediction I will reveal here is that, with the opening of so many new windows on the cosmos, we are sure to discover something unanticipated and astonishing.

Sunday, January 07, 2007

Physics Will Not Achieve a Theory of Everything

Reposted from: http://edge.org/q2007/q07_14.html
my highlights in blue

FRANK WILCZEK
Physicist, MIT; Recipient, 2004 Nobel Prize in Physics; Author, Fantastic Realities

Physics Will Not Achieve a Theory of Everything

I'm optimistic that physics will not achieve a Theory of Everything.

That might seem an odd thing to be optimistic about. Many of my colleagues in physics are inspired by the prospect of achieving a Theory of Everything. Some even claim that they've already got it. (Acknowledging, to be sure, that perhaps a few i's remain to be dotted or a few t's to be crossed.) My advice, dear colleagues: Be careful what you wish for. If you reflect for a moment on what the words actually mean, a Theory of Everything may not appear so attractive. It would imply that the world could no longer surprise us, and had no more to teach us.

I don't buy it. I'm optimistic that the world will continue to surprise us in fascinating and fundamental ways.

Simply writing down the laws or equations is a long way from being able to anticipate their consequences. Few physicists—and no sober ones—seriously expect future work in fundamental physics to exhaust, for example, neuroscience.

A less literal reading of "Theory of Everything" is closer to what physicists who use it mean by it. It's supposed to be a theory, not really of everything, but of "everything fundamental". And here "fundamental" is also being used in an unusual, technical sense. A more precise word here might be "basic" or "irreducible". That is, the physicists' Theory of Everything is supposed to provide all the laws that can't be derived logically, even in principle, from other laws. The structure of DNA surely emerges—in principle—from the equations of the standard model, and I strongly suspect that the possibility of Mind does too. So those phenomena, while they are vastly important and clearly fundamental in the usual sense, aren't fundamental in the technical sense, and elucidating them is not part of a Theory of Everything.

I think we're about to enter a new Golden Age in fundamental physics. The Large Hadron Collider (LHC), which should begin to operate at CERN, near Geneva, starting in summer 2007, will probe the behavior of matter at energies higher than ever accessed before. There is no consensus about what we'll find there. I'm still fond of a calculation that Savas Dimopoulos, Stuart Raby and I did in 1981. We found—speaking roughly—that we could unify the description of fundamental interactions (gauge unification) only within an expanded version of relativity, which includes transformations of spin (supersymmetry). To make that dual unification we had to bring in new particles, which were too heavy to be observed at the time, but ought to be coming into range at the LHC. If they do exist we'll have a new world of phenomena to discover and explore. The astronomical riddle of dark matter could well be found there. Several competing ideas are in play, as well. The point is that whatever happens, experimenters will be making fundamental discoveries that take us by surprise. That would be impossible, if we had a Theory of Everything in the sense just described—that is, of everything fundamental.

In recent months a different, much weaker notion of what a "Theory of Everything" might accomplish has gained ground, largely inspired by developments in string theory. In this concept, the Theory provides a unique set of equations, but those equations that have many solutions, which are realized in different parts of the Universe. One speaks instead of a multiverse, composed of many domains, each forming a universe in itself, each with its own distinctive laws. Now even the fundamental—i.e., basic, irreducible—laws are beyond the power of the Theory to supply, since they vary from universe to universe. At this point the contrast between the grandeur of the words "Theory of Everything" and the meager information delivered becomes grotesque.

The glamour of the quest for a Theory of Everything, or a Final Theory, harks back Einstein's long quest for his version, a Unified Field Theory. Lest we forget, that quest was fruitless. During his great creative period, Einstein produced marvelous theories of particular things: Brownian motion, the photoelectric effect, the electrodynamics of moving bodies, the equality of inertial and gravitational mass. I take inspiration from the early Einstein, the creative opportunist who consulted Nature, rather than the later "all-or-nothing" romantic who tried (and failed) to dictate to Her. I'm optimistic that She'll continue to surprise me, and my successors, for a long time.