Saturday, January 06, 2007

How Technology Is Saving the World

Reposted from: http://edge.org/q2007/q07_9.html
my highlights in blue

DIANE HALPERN
Professor, Claremont McKenna College; Past-president, American Psychological Association; Author, Sex Differences in Cognitive Abilities

How Technology Is Saving the World

I was going to be modest about it, but the congratulatory messages have been slow to arrive, so I will have to toot my own horn. The exciting news is that I have been named Time Magazine’s 2007 Person of the Year. It is true that this is an honor that I share with every other user of technology, but I share well, and I hope that you are as flattered as I am with this well-deserved recognition. In past years, Time Magazine has bestowed this honor on such well-known luminaries as Bill and Melinda Gates, George W. Bush, Rudolph Giuliani, and Ayatollah Khomeini, so we are in good company. All users of technology received this (unfortunately) nonmonetary award as an acknowledgement of the work we have done to change the world in dramatic and unexpected ways. It would be difficult to imagine a more diverse group of award winners. I am writing this article from London, where the Queen just announced that her annual Christmas message, which according to official Royal sources is anticipated by millions (I did not independently verify these data), will be available via pod cast for downloading onto I-Pods and other MP3 devices. In fact, all of her past Christmas messages are now available in multiple viewing formats. Although the Queen refused to respond to questions about whether she personally owned such a device, the younger Royals were quick to add that they did. As illustrated in this momentous news, which is just one example of the radical changes in how we are communicating, there is ample evidence that users of technology are changing the world.

In just the last year, bloggers destroyed some political careers (e.g., Mark Foley) and launched others (e.g., Barack Obama). Technology has changed the way we get information, compute and pay our taxes, keep diaries, do homework, stay in touch, read books, learn almost anything, conduct research, make purchases, compose music, find mates, run businesses, diagnose diseases, and more. At the click of a mouse, I can listen to rap music from Poland or find an organ donor. Technology has enabled all of this and more. I believe that it will also profoundly change how we think about each other and that, for the most part, the change will be for the good.

There are many possible doomsday scenarios in which technology depersonalizes our relationships and makes war more efficient and propaganda more believable. But I am a teacher, and teaching is, at its heart, an act of optimism. If you scrape the crusty veneer off even the curmudgeonliest of professors (yes, "curmudgeonliest" is a real word), you will find a core (sometimes it will be a small core) of optimism. Optimism is a way of viewing possible futures with the belief that you can affect it for the better.

A colleague recently lamented that there are no unexplored places left on earth. As our daily lives have become increasingly international, there are also fewer strange foods to be tasted, exotic locations to visit, or social customs that are entirely foreign. One reason for the loss of opportunities for adventures into the unknown is that international foods can be found in every city and people from every region of the globe are shopping, eating, studying, and working in even small Midwestern towns in the United States and their equivalent in many countries around the world. Although most of us are still far too uniformed about the lives of people in other regions of the world or in other neighborhoods in our own city, it is also true that we now know more about each other than at any other time in history. Like the other users of technology, I have come to know much more about the lives of others who are "not like me" than I would have even a half generation ago. We are not even close to obtaining global citizenship, but it is at least an idea that people can comprehend and debate.

Along the billion or so other award winners, I can and do communicate with people all over the world at cable speed. Consider for example, the international gaming community that plays together on line and, at the same time, shares their political views and professional and personal lives. They engage in a prolonged social intercourse that spans continents. Their heroes are the gaming experts who come from many countries and backgrounds. The strangeness of "foreigners" that used to define the relationship between people of different religions, customs, races, and regions of the world is disappearing as the rapidly increasing numbers of users of technology connect over time and space in ways that were only available to members of the same clan or village a few decades ago.

Social and political psychologists study "in group" favoritism, which has been a root cause of most conflicts throughout time. The term refers to the tendency to believe that members of one’s own group are more deserving than members of other or "out-groups." Those undeserving others, whom we perceive as being more similar to each other than members of our own group are (they all look and think alike), pose a threat to our own group’s right to whatever is scarce and valued—land, good jobs, clean water, and so on. Think of any conflict, past or present. Whether it is the Bloods and the Crips, Shiites and Sunnis, Tutsis and Hutus, African-Americans and Hispanics, or the hundreds of years of the Crusades with Catholics against Muslims, these are all examples of "us against them" or in-group—out-group conflicts. Pessimists will readily point out that these conflicts have existed since the dawn of time and only a pie-eyed optimistic could believe that intergroup conflict could be reduced by making "the other" seem more like "us." But, there is evidence that we can.

Psychologists in Northern Ireland found that when people in divided societies come into contact in nonthreatening ways, they are in a better position to understand the other group's perspective, and come to regard "them" as equally as human as members of their own group. This contact can lead to greater intergroup trust and even a measure of intergroup forgiveness for past wrongs. Similar approaches are being used by Turkish psychologists who believe that the "Turkish-Armenian conflict has been suffering from a lack of real relational space." They are approaching this long-running conflict by finding ways that members of these two cultures can relate to each other, and the virtual world may be the safest place for these meetings. Psychologists in Israel and Palestine have been assisting teachers and students from both sides of this divide to write joint history books that incorporate narratives from the lives of all of the people who are living contemporary Israeli-Palestinian history. It is the ability to "come together" that is forcing each side to recognize the humanity of "the other." Although these projects are a mix of face-to-face and technology assisted meetings, the role of technology can be used to expand these peace-waging efforts.

Technology is bringing people from diverse backgrounds together, with most of the meetings are taking place in the virtual world. The challenge is to bring in those who are still excluded from the technology revolution, which includes the poor of the world and those whose governments are engaged in futile efforts to restrict access to information from the rest of the world. There will always be "in" and "out" groups, but these categories are becoming more fluid as we identify with a variety of different groups instead of defining ourselves along traditional demographic variables.

Allegiances now extend beyond national borders. I feel as distressed about the loss of the innocent lives of Iraqi citizens as I do about the loss of the innocent lives of the women and men in the U.S. military. I can view the suffering of each any time, night or day, by logging onto the "local" news in any part of the world. I can read the uncensored thoughts of anyone who wishes to share them on their personal blogs and watch the home videos they upload to YouTube and other public video sites. Government censorship is virtually impossible and the ability to hear directly from ordinary people around the world has caused me to see our connectedness. We have only just begun to realize the profound ways that technology is altering our view of the "other people" who share our planet. The use of technology to make the strange familiar will have an overall positive effect on how we think about others in our shrinking world. We are becoming more similar and connected in our basic "humanness." And, that is a good thing.

in science & technology we have just started to scratch the surface

Reposted from: http://edge.org/q2007/q07_9.html
my highlights in blue

ANTON ZEILINGER
University of Vienna and Scientific Director, Institute of Quantum Optics and Quantum Information, Austrian Academy of Sciences

The Future Of Science

I am optimistic about the future of science. After all, science as Mankind’s systematic endeavour of understanding Nature is only a few hundred years old. To believe that we have discovered the essentials of understanding Nature in such a short time is a sign of either arrogance or lack of fantasy. So far science is guided by the, in my eyes fallacious, Cartesian cut between res cogitans and res extensa. It is wrong to believe that the world out there exists independent of our observation. But it is equally wrong to believe that it exists only because of our observation. We have to and we will find a completely new way of looking at the world which will fully transcend our present materialistic paradigm. After all, we have learned in quantum physics that all concepts of material existence evaporate. In the end we are left with probability fields, probabilities of the results of observations. I am convinced that in science we have just started to scratch the surface. Our understanding of the world will be radically different from the understanding we have today.

I am optimistic about the future of religion. We will learn to shed the unessential dogmas, rules, definitions, prejudices which have been collected by the religions over centuries and millennia. We will learn that they have been created out of feelings of insecurity, out of an innate need of mankind to define and understand even the undefinable and ununderstandable. I am convinced that in all major religions we will discover the essentials of what it means to be human in this world. We will succeed in convincing church leaders and religious leaders to be more audacious and to open up to other views of the world and to rely less on what they perceive to be their own access to truth.

The present battle between science and religion will some day be seen as a battle between two positions where neither one is justified even from their own perspective. Science will never be able to prove that God does not exist and religion will learn that its essence is far deeper than ephemeral questions like whether we were created by evolution or not. I believe that some day we will arrive at a coherent view of the world which will transcend both what today we call science and what today we call religion.

I am optimistic about the future of technology. Here too we have hardly scratched the surface. With quantum information technology, mankind for the first time is entering a field of technology which, by all we know today, has not been used by Nature in evolution. I am convinced that most of the technology of the future will be of that kind. New ideas will be created and new technologies will be invented which only could come into existence because we invented them. There is no other road to making them happen.

I believe in the future of mankind. As long as there are children, as long as there are people who look up to the night sky in sheer wonder, as long as there is music, and poetry, and the Mona Lisa, and old monasteries, and young artists, and fledgling scientists and all the other expressions of mankind’s creativity, I will remain optimistic.

Evidence based everything

Reposted from: http://edge.org/q2007/q07_9.html
my highlights in blue

CLAY SHIRKY
Social & Technology Network Topology Researcher; Adjunct Professor, NYU Graduate School of Interactive Telecommunications Program (ITP)

Evidence

As schoolchildren, we learn that different weights fall at the same speed. This simple and readily tested observation, first published by Galileo, refuted Aristotle, who claimed that heavy things fall faster. As Galileo put it in Two New Sciences "I greatly doubt that Aristotle ever tested by experiment whether it be true..." We are left to wonder how people could have believed what they were told, and for two millennia at that, without ever checking? Surely the power of evidence over authority is obvious.

Except it isn't. Even today, evidence has barely begun to upend authority; the world is still more in thrall to Aristotle than Galileo. As a simple example, the time-honored advice for those suffering from bad backs has been bed rest. Only recently, though, have we discovered bed rest isn't the best treatment, and isn't even particularly good compared to moderate activity. How did this discovery come about? A researcher in the field of Evidence-based Medicine surveyed multiple databases of trials and results for patients with back pain. (It tells us something about medicine's current form that we even need a term like Evidence-based Medicine.) And why did it take so long to look at the evidence? Same reason it took so long to question Aristotle: some doctor in the distant past reasoned that bed rest would be a good idea, and it became the authoritative and little-questioned view.

In school, the embrace of evidence is often taught as if it were a one-time revolution that has now been internalized by society. It hasn't. The idea of evidence is consistently radical: Take nothing on faith. No authority is infallible. If you figure out a good way to test something, you can contradict hallowed figures with impunity.

Evidence will continue to improve society, but slowly — this is long-view optimism. The use of evidence dragged the curious mind from the confusion of alchemy into the precision of chemistry in the historical blink of an eye, but its progress past the hard sciences has been considerably slower. Even accepting that evidence should shape our views is inconsistent with much human behavior. Everything from the belief in supernatural beings to deference to elders pushes against the idea that a single person, if he or she comes to understand the evidence, should be allowed to upend a millennium of cherished human belief.

It is only in the last hundred years that evidence has even begun spreading from the hard sciences into other parts of human life. Previous platitudes about the unpredictability or universal plasticity of human behavior are giving way to areas of inquiry with names like Sociobiology, Evolutionary Psychology, and Behavioral Economics. (That we need a label like Behavioral Economics says as much about economics as Evidence-based Medicine does about medicine.) As reliance on evidence spreads, it takes with it an understanding of how it works. Apologists for religion often bolster their claims by noting that it is impossible to disprove the existence of supernatural beings. This argument assumes that their listeners don't understand how evidence works — it makes sense to believe in things for which there is evidence, and no sense to believe in things for which there is none. As evidence moves out of the lab and into everywhere else, rhetorical tricks like that are going to be progressively less effective. There will still be fundamentalists, of course — probably more of them, as improved evidence requires a heightened ability to shield the mind — but the oxymoronic middle ground of 'religious but reasonable' will become progressively harder to occupy.

This isn't just about religion, though. Most of the really important parts of our lives ·who we love and how, how we live and why, why we lie and when — have yet to yield their secrets to real evidence. We will see a gradual spread of things like evidence-based politics and law — what is the evidence that this expenditure, or that proposed bill, will have the predicted result? The expectation that evidence can answer questions about the structure of society will discomfit every form of government that relies on sacrosanct beliefs. Theocracy and communism are different in many ways, but they share the same central bug — they are based on some set of assertions that must remain beyond question.

Social science is expanding because we are better about gathering data and about understanding it. We have gone from a drought to a flood of data about personal and social behavior in the last generation. We will learn more about the human condition in the next two decades years than we did in the last two millennia, and we will then begin to apply what we learn, everywhere. Evidence-based treaties. Evidence-based teaching. Evidence-based industrial design. Evidence-based parenting.

There will always be some questions we can't answer, but they will be closer in spirit to "Who put the bomp in the bomp-bah-bomp-bah-bomp?" than to "Why do fools fall in love?" There is an astonishing amount of work going on on that latter question right now, and there's a reasonable chance we'll have a really good answer, to it and to thousands of other questions once thought to be beyond study or explanation, in the coming years.

The Creation As Well As Consumption of Scientific Knowledge Will Be Potentially Accessible To Anyone

Reposted from: http://edge.org/q2007/q07_9.html
my highlights in blue

NEIL GERSHENFELD
Physicist, MIT; Author, FAB

The Creation As Well As Consumption of Scientific Knowledge Will Be Potentially Accessible To Anyone

I'm optimistic about the prospects for science to become a much more broadly participatory activity rather than today's largely spectator sport.

Success as a scientist is certainly limited by interest and ability, but it also requires access to the accumulated body of scientific knowledge and to the means to practice it. I've found the former to be much more widely distributed than the latter; until recently, becoming a successful scientist usually required becoming a member of an elite technical institution.

It's considered axiomatic that smart people like to surround themselves with smart people. But the reality at a place like MIT is that we're all so time-stressed and multi-tasked we rarely have time to do anything unscheduled; many of my closest collaborations are with people who are far away. Two technological changes now provide an opportunity to revisit the boundary between being on and off of a campus.

The first is research on digital fabrication that is leading to much more accessible means for making and measuring things. With $50k in infrastructure, a fab lab can now do experimental work in the field that would have been hard to do at MIT when I first arrived there. And the second is the emergence of broadband videoconferencing and software for project and knowledge management that can make remote collaborations as convenient as local ones.

Together, these are leading to the emergence of technical training and research projects that are fundamentally distributed rather than based on remote or centralized access to scarce resources. Instead of scientific careers being gated by room in classes, and headcount numbers, and limited lab space, and editorial fashions, and overhead rates, they can be bounded by a much more interesting resource, the availability of ideas.

I expect that scientific productivity will always be very non-uniformly distributed, with disproportionate contributions from a small number of remarkable people, but the sample size for finding and fostering those people can be improved by a few billion or so. There's a grand feedback loop ready to be closed, between the content and organization of scientific invention. Many of today's most compelling new questions are still tackled with old institutional models; it's ironic that religion has had its Reformation but that the role of a research university would be recognizable to a medieval monk. The future that I'm optimistic about is one in which the creation as well as consumption of scientific knowledge is potentially accessible to anyone.

the Scientific Method will help transform society

Reposted from: http://edge.org/q2007/q07_9.html
my highlights in blue

J. CRAIG VENTER
Human Genome Decoder; Director, The J. Craig Venter Institute

Evidence-Based Decision Making Will Help Transform Society

I am optimistic (and hopeful) that one of the key tenets of scientific investigation, "evidenced-based decision making" will be extended to all aspects of modern society. Good experimental design works toward creating conditions that provide the most useful information on a given topic while attempting to eliminate, or at least limit, spurious, irrelevant artifacts from being generated that could falsely influence data interpretation. Data or information is collected until a threshold is exceeded permitting either conclusions to be drawn or at least development of a hypothesis that with further testing can be validated or falsified.

Not all questions can be simply answered by just looking at the evidence because we are still at a very early stage in understanding the universe around us. For example, in attempting to understand how life began on our planet we can only guess based on certain assumptions whether it originated de novo here or arrived from another planet or a distant galaxy. We do know that a few hundred kilograms of material is exchanged annually between the Earth and Mars, and that new planets are discovered at an unprecedented pace. When we discover microbial life on Mars we will double the number of planets with known life while increasing the possibility of finding life elsewhere in the universe.

For most scientists the evidence for evolution, regardless of its origins, has been overwhelming. The fossil record was sufficient evidence for most, but now with genome sequencing information from all branches of life, including from some of our closest relatives like Neanderthals, chimps and rhesus monkeys, the results should be clear cut for anyone whose thinking is not overly clouded by a "belief" system.

In contrast we have newspapers, radio and television news stations owned by individuals or governments presenting subjective, selective subsets of information. As well, there are political campaigns and statements by those wishing to gain or retain power that can only be dismissed as partisan."

We need to push harder for an education system that teaches evidence-based decision making while we hold our public leaders to a higher standard and less partisan behavior as we attempt to tackle some of the historically most difficult challenges facing the future of humanity.

science is recapturing the attention and imagination of world leaders

Reposted from: http://edge.org/q2007/q07_8.html
my highlights in blue

ADAM BLY
Founder and Editor-in-Chief, Seed

Science on the Agenda

I am optimistic that science is recapturing the attention and imagination of world leaders.

Witness, for example, the agendas of the World Economic Forum, the Clinton Global Initiative, or the African Union Summit; science has made a well-timed transition from a topic of peripheral interest to the leaders of the world to one inextricably tied to issues of development, global health, innovation, competitiveness, and energy. At a time when science is spurring markets, arts and ideas, it is now making its way into our halls of power with considerable momentum.

The critical challenge is for our understanding of science to keep up with our growing interest in science. Our new global science culture demands a new level of science literacy, for general populations and indeed for the leaders that govern them. What constitutes a science literate citizen in the 21st century is one of the most important questions we need to collectively address today.

We can certainly imagine that it is no simple task to convince a continent struggling with clear and present threats that it should think about its future, let alone take action. But across the developing world, science literacy is emerging as a primary focus of its leadership. The argument goes as follows: move away from dependence on short-term relief and toward the development of a long-term scientific infrastructure that generates its own solutions. This fundamentally entails an investment in people who will shape their own sustainable science culture.

This month's African Union Summit in Addis Ababa will focus almost exclusively on this very topic. This comes on the heels of a consensus by the continent’s education ministers that science “is the most important tool available for addressing challenges to development and poverty eradication, and participating in the global economy.” China, for the first time, has made raising science literacy an official part of its development strategy. It is worth noting that China’s plan calls for science literacy to extend across demographics — from urban workers to rural communities to government officials — each for different reasons but all for a common goal.

This past year we have heard about the potential for the West to generate intellectual ROI from its aid to the developing world — new insight into disease for example. It is exciting to imagine how this cross-continental laboratory may pioneer new approaches to science literacy with global consequence.

Science solves problems. And this should be its consistent tagline in the developing world. In the developed world, however, science will spark more than solutions. It can spark a renaissance.

It is simple to tie science to money and military, drugs and technologies, present and future. It will be those leaders in the developed world who embrace science's blue sky potential, its ability to inspire us and change us long-term, who will most significantly affect their nations and the world. Now is the time for courageous science leadership.

In Europe, the Large Hadron Collider, the biggest science experiment of our time and herald of a new era of Big Science, will go online next year, corralling the collective imagination of (at least) a continent. Tony Blair has reaffirmed that Britain's "future prosperity rests more than ever before on the hard work and genius of our scientists." And Germany's newly elected physical chemist-turned-Chancellor, Angela Merkel, has made science one of the priorities for Germany's upcoming EU presidency.

In 1969, Robert Wilson, then the director of Fermilab, testified before the US Congress in support of his multi-million dollar particle accelerator. He said: "It has only to do with the respect with which we regard one another, the dignity of men, our love of culture. It has to do with: Are we good painters, good sculptors, great poets? I mean all the things we really venerate in our country and are patriotic about. It has nothing to do directly with defending our country except to make it worth defending."

It will take inspired, informed, and heroic leaders to drive our global science culture forward — toward the development of Africa, the emergence of a renaissance or an outcome we have yet to imagine. After an all-too-long period where it felt like science and scientists had lost their seat at the table, I am optimistic we're about to witness a new era of science-savvy.

Life may have started more than once on Earth

Reposted from: http://edge.org/q2007/q07_8.html
my highlights in blue


ROBERT SHAPIRO
Professor Emeritus, Senior Research Scientist, Department of Chemistry, New York University; Author, Planetary Dreams

Strangers In Our Midst

I am optimistic about the prospect of detecting alternative life. All life that we know, as different as it may appear in size and shape, shares a common heritage at the biochemical level. From amoebas to zebras, familiar life is dominated by two types of large molecule—nucleic acids and proteins. This biochemical similarity, which extends to many other features as well, implies that we are all products of a single life-starting event.

If this event was extremely improbable, then Earth may be the only seat of life in an immense and barren universe. This picture would be little changed if our kind of life has drifted across empty space to fertilize our nearest planetary neighbors. As Jacques Monod commented: "The universe was not pregnant with life nor the biosphere with man. Our number came up in the Monte Carlo game."

As no firm evidence exists that supports or denies this package of gloom, we are not obliged to purchase it. A different scientific position holds that the generation of life is written into the laws that govern the universe. If a limited set of environmental requirements are satisfied—a supply of useful energy, fertile material to absorb and use the energy, and a fluid medium to support the transaction, then life will emerge. In the words of biologist Stuart Kauffman: "If all this is true, life is vastly more probable than we have supposed. Not only are we at home in the universe, but we are far more likely to share it with unknown companions."

The issue can be settled by scientific exploration. The discovery of life forms sufficiently different from our own to indicate a separate origin would tilt the debate decisively in favor of a fertile universe. The search for such life has traditionally been directed to extraterrestrial locales. Spacecraft have conducted preliminary surveys of Mars, Europa, Titan and Enceladus, and discovered that one or more of the necessary requirements have been met. As human have not yet traveled further than the Moon, the search for novel life forms on these worlds is likely to be carried out will be carried out by robots. If any creatures are encountered, then their biochemical characterization will also be conducted with the use of pre-programmed instruments, but weight limitations will constrain the versatility of the tools that can be landed on these distant worlds. The Viking missions of 1976 illustrated the ambiguities that can arise in such explorations. Even if encouraging data was returned to Earth, a sample return mission would most likely be needed to settle a question of such magnitude. Considerations of safety would make stringent quarantine measures mandatory for any returned samples.

Extensive planning and testing would be needed in advance to design a weight-limited apparatus capable of identifying alternative life. As astrobiology budgets are often under pressure, some delays would also be likely before such an apparatus was launched. Further, all of the above listed sites except Mars would require a number of years of travel time to bring the instrument package to its destination. Thus, even if the fertile universe view was correct, many decades might pass before the issue was settled.

Fortunately, a new strategy has emerged that is capable of providing much more rapid returns. One world exists that is known to have all of the capabilities needed to generate and sustain life. It is close at hand, so that any possible samples of alternative life could quickly be subjected to examination in depth, using the best instruments that science can provide. Human scientists would supervise the studies directly, and modify them as needed. That world is Earth.

The suggestion that alternative, novel life forms might be found on our own planet runs of course directly into the obstacle of an entrenched paradigm. Biologists have characterized hosts of life forms, particularly at the microbial level, and encountered the familiar nucleic acid-protein based system every time. Our type of life reigns on this planet. If alternative creatures ever existed, then surely they were eliminated during the intense combat of evolution. The fact that no such creatures had turned up despite the intense efforts that biologists have expended in studying life on Earth has served to reinforce this widely accepted conclusion.

Recently, however, two papers have challenged this assumption. One, written in Australia, was provided by physicist Paul Davies and mathematician Charles Lineweaver. The other was authored by Colorado-based philosopher Carol Cleland and microbiologist Shelley Copley. Three of these writers and a number of other scientists who have been interested in the question of extraterrestrial life (myself included) gathered at Arizona State University to discuss this possibility. A central conclusion that emerged was that alternative Earth life may simply have been overlooked because microbiological search techniques were targeted at our own kind of life. Many diverse cell-like objects can be observed when samples taken from soil or water are examined under the microscope. Only about 1 % of them choose to multiply when conventional growth media are added to the mixture and these colonies are the easiest to characterize. In some cases, newer techniques based upon nucleic acid sequencing have been used to identify additional species. Some of them represent early and unexpected branches from our presumed universal tree of life. The existence of truly different organisms in that mix, for example ones that lacked nucleic acids entirely and stored their hereditary information in some other way, was hardly considered. If such organisms existed, they would most likely be products of that speculative second origin.

How could such organisms have survived the competition of our robust nucleic acid based life? In one scenario, they may have preferred to dine upon alternative food stuffs not favored by familiar life, selecting for example arsenate in place of phosphate, unfamiliar amino acids or mirror image forms of conventional biomolecules. The most extreme example of this type may be the speculative mineral-based life forms suggested by Scottish chemist Graham Cairns-Smith.

A different strategy would also allow alternative Earth life to flourish without direct competition. The organisms may have selected environments that are uninhabitable by conventional life. Conventional terrestrial organisms have shown great versatility in adapting to extremes of acidity, temperature, dryness, saltiness, radiation and other variables. Even so, their adaptability is not unlimited and some niches yet remain which they cannot utilize. Yet organisms with a very different set of internal chemicals might find them to be ideal dwelling places. One such locality that was mentioned at the conference was Iron Mountain, California, from whose interior extremely acidic waters emerge.

Ironically (forgive the pun) a front page story in the New York Times of Dec. 23, 2006, derived from a paper published in Science a day earlier reported the isolation of novel microorganisms from the waters of Iron Mountain. Their novelty arose from the record-breaking smallness of the cells, rather than from a difference in their internal biochemistry sufficient to suggest a separate origin. Yet the group of California-based scientists that had made the discovery also noted the presence of "rounded objects" that "were not shown to contain DNA."

How could such objects, or others that may turn up if a deliberate search for biochemically novel organisms is made, be shown to be offspring of a second origin? My own suggestion is that an inventory be made, as complete as possible, of their chemical contents. Many advanced instruments have been devised in recent years that can perform a microchemical analysis of tiny samples. No questions of instrument payload, robotic analysis or sample return need be considered, in contrast to the case of specimens taken on other worlds. If the analysis should reveal a chemical suite that differed notably from those derived from conventional life and from the near-random mixtures produced by abiotic processes, then we would have a strong indication that we may have hit a scientific jackpot. Another approach to the identification of alternative life would involve the use of unorthodox culture media, toxic to conventional life, that induce the alternative organisms to grow. More ingenious strategies may emerge when the energies of additional scientists are turned toward this question.

Of course, a thorough search of this planet may yet return empty-handed. My own optimism is based on my particular outlook on the mechanisms involved in the origin of life. But that is another story.

The Survival of Friendship

Reposted from: http://edge.org/q2007/q07_8.html
my highlights in blue


JUDITH RICH HARRIS
Independent Investigator and Theoretician; Author,
No Two Alike: Human Nature and Human Individuality

The Survival of Friendship

I am optimistic about human relationships — in particular, about friendship. Perhaps you have heard gloomy predictions about friendship: it's dying out, people no longer have friends they can confide in, loneliness is on the rise.

But friendship isn't dying out: it's just changing, adapting to the changes in the world. People are discovering different ways of getting together. It may be harder to find a bowling partner but it's easier to find someone to chat with, because there are many more ways to chat.

When I was a child, people with chronic illnesses were described as "shut-ins." Now a person can be shut in without being shut out. I have friends whom I know only through e-mail conversations but who are as dear to me as my college roommate and dearer by far than my next-door neighbor.

The desire to form and maintain relationships is one of the built-ins of human nature. Primates are social animals, and humans are the most social of all. An extravagant amount of mental capacity is devoted to relationships. We can recognize at a glance the faces of thousands of different people and, with equal ease, remember whether or not we like them. With a bit more effort, we can dredge up other useful information about most of them: their names or professions or where we met them. Throughout our lives we collect and store information about specific individuals, so that — just in case we ever run into them again — we will know how to act. We even store information about people we have never met and whose faces we have never seen.

Collecting people information is something we do without training and with no reward other than the enjoyment we get from doing it. We don't need a nudge from the conscious mind, telling us that the information may come in handy someday. But in fact it may come in handy. People we have never met before may be important to us in the future. They may become our trading partners or employers. They may become our lovers or our rivals.

Or they may simply become our friends.

The Return of the Discipline of Experiment Will Transform Our Knowledge of Fundamental Physics

Reposted from: http://edge.org/q2007/q07_8.html
my highlights in blue


LEE SMOLIN
Physicist, Perimeter Institute; Author, The Trouble With Physics

The Return of the Discipline of Experiment Will Transform Our Knowledge of Fundamental Physics

In science as in politics it seems that Eldredge and Gould's metaphor of punctuated equilibrium holds. When progress happens, it happens fast and the whole culture vibrates with the excitement of it. We have had a bit too much equilibrium lately, of disappointed expectations following as a natural consequence of unwisely reduced ambitions. But I am optimistic that the next decades will see breakthroughs in key problems on which we now seem stuck. In physics, new experiments including the LHC, AUGER, GLAST, PLANCK, LIGO and others are likely to transform our knowledge of fundamental physics, and end the long period when theory sought to progress without the discipline of experiment. Very likely we will be surprised and humbled by what is seen, but this will be followed by rapid progress as new ideas are quickly invented to explain the surprising data.

How can I be optimistic without knowing what direction science will take? This is exactly the point. There are two kinds of optimism, the optimism of people who think they know the future and the optimism of people who believe the future will be more interesting and, if always imperfect, more wonderful than they can imagine. I am of the second kind. The first kind sometimes comes along with a belief that time and change are illusions, and that the world is evolving towards an eternal timeless state of perfection. This is the optimism of religious fundamentalists and orthodox Marxists, and one sees it reflected also in the cosmologies in which our evolving universe is just a transient fluctuation in an otherwise permanent state of thermal equilibrium. The opposite kind of optimism lies behind the evolutionary theorists who believe the world is so intricate that the simplest mechanism that could predict the future of life and the cosmos is the universe itself. If we are the first kind of optimist we seek to transcend the complexities of life to discover something eternal behind it, something like the imagined view of God. If we are the second, we seek to live and think within the swirl of life; we aim for comprehension and wisdom but have no illusions of transcendence or control.

We're Not Insignificant After All

Reposted from: http://edge.org/q2007/q07_7.html
my highlights in blue


MAX TEGMARK
Physicist, MIT; Researcher, Precision Cosmology

We're Not Insignificant After All

When gazing up on a clear night, it's easy to feel insignificant. Since our earliest ancestors admired the stars, our human egos have suffered a series of blows. For starters, we're smaller than we thought. Eratosthenes showed that Earth was larger than millions of humans, and his Hellenic compatriots realized that the solar system was thousands of times larger still. Yet for all its grandeur, our Sun turned out to be merely one rather ordinary star among hundreds of billions in a galaxy that in turn is merely one of billions in our observable universe, the spherical region from which light has had time to reach us during the 14 billion years since our big bang. Then there are probably more (perhaps infinitely many) such regions. Our lives are small temporally as well as spatially: if this 14 billion year cosmic history were scaled to one day, then 100,000 years of human history would be 4 minutes and a 100 year life would be 0.2 seconds. Further deflating our hubris, we've learned that we're not that special either. Darwin taught us that we're animals, Freud taught us that we're irrational, machines now outpower us, and just last month, Deep Fritz outsmarted our Chess champion Vladimir Kramnik. Adding insult to injury, cosmologists have found that we're not even made out of the majority substance.

The more I learned about this, the less significant I felt. Yet in recent years, I've suddenly turned more optimistic about our cosmic significance. I've come to believe that advanced evolved life is very rare, yet has huge growth potential, making our place in space and time remarkably significant.

The nature of life and consciousness is of course a hotly debated subject. My guess is that these phenomena can exist much more generally that in the carbon-based examples we know of.

I believe that consciousness is, essentially, the way information feels when being processed. Since matter can be arranged to process information in numerous ways of vastly varying complexity, this implies a rich variety of levels and types of consciousness. The particular type of consciousness that we subjectively know is then a phenomenon that arises in certain highly complex physical systems that input, process, store and output information. Clearly, if atoms can be assembled to make humans, the laws of physics also permit the construction of vastly more advanced forms of sentient life. Yet such advanced beings can probably only come about in a two-step process: first intelligent beings evolve through natural selection, then they choose to pass on the torch of life by building more advanced consciousness that can further improve itself.

Unshackled by the limitations of our human bodies, such advanced life could rise up and eventually inhabit much of our observable universe. Science fiction writers, AI-aficionados and transhumanist thinkers have long explored this idea, and to me the question isn't if it can happen, but if it will happen.

My guess is that evolved life as advanced as ours is very rare. Our universe contains countless other solar systems, many of which are billions of years older than ours. Enrico Fermi pointed out that if advanced civilizations have evolved in many of them, then some have a vast head start on us — so where are they? I don't buy the explanation that they're all choosing to keep a low profile: natural selection operates on all scales, and as soon as one life form adopts expansionism (sending off rogue self-replicating interstellar nanoprobes, say), others can't afford to ignore it. My personal guess is that we're the only life form in our entire observable universe that has advanced to the point of building telescopes, so let's explore that hypothesis. It was the cosmic vastness that made me feel insignificant to start with. Yet those galaxies are visible and beautiful to us — and only us. It is only we who give them any meaning, making our small planet the most significant place in our observable universe.

Moreover, this brief century of ours is arguably the most significant one in the history of our universe: the one when its meaningful future gets decided. We'll have the technology to either self-destruct or to seed our cosmos with life. The situation is so unstable that I doubt that we can dwell at this fork in the road for more than another century. If we end up going the life route rather than the death route, then in a distant future, our cosmos will be teeming with life that all traces back to what we do here and now. I have no idea how we'll be thought of, but I'm sure that we won't be remembered as insignificant.

The Future Of String Theory

Reposted from: http://edge.org/q2007/q07_7.html
my highlights in blue


GINO SEGRE
Physicist, University of Pennsylvania; Author: Faust In Copenhagen: A Struggle for the Soul of Physics

The Future Of String Theory

I am optimistic about the future of our thinking regarding string theory and the early universe. Until fairly recently I did not feel this way since string theory seemed to be a community unto itself, albeit a very talented one. Controversy has created an important dialogue and strife has erupted. I think this is all to the good. The basis for the disagreement goes back 30 years.

A unified understanding or so-called "theory of everything" has long been sought. The standard model that emerged in the 1970s provided a very significant step forward but left undetermined some 20 parameters: the values of the six quark and six lepton masses, various couplings etc. Initially it was hoped that string theory, aside from a unification of forces with quantum gravity, would determine the values of these parameters. That dream has not been realized.

A very significant group of theoretical physicists has now abandoned the dream. Pointing out that even string theory supports the view that an essentially infinite number of possibilities can be realized for a universe, the so-called landscape, they maintain that we live in one of these choices, the universe where the 20 or so parameters are fixed to be the values we observe. Other universes, with other values of the parameters, are continuously emerging and dying and still others live by our side. However we are limited in the possibility of observations and measurements to our own universe so that, in a deep sense, the 20 parameters that determine our world are completely arbitrary. We would not exist if they were not what they are, but there is no further understanding of their values.

A second group maintains that abandoning the dream that set elementary particle physics on its course a century ago, that of determining the forces and parameters of the sub-atomic world, is both premature and intellectually wrong. They maintain this is not science.

There is an intermediate position that, understandably, has not been embraced vigorously by either side. Perhaps very few of the 20 or so parameters, some of the mass scales, correspond to the universe we live in, but the others are set by string theory or some future theory we have not yet discovered. This could happen if e.g. the quark and lepton masses are calculable numbers that multiply a mass given by the particular universe we happen to live in. In this case both sides would be right. The numbers would be set by the theory and the mass scale by the choice of universe. I find the notion intriguing, but it may also be that both sides are wrong and some other stunning synthesis will emerge.

So why am I optimistic? Because I believe that controversy, with clearly drawn out opposing positions, galvanizes both sides to refine their opinions, creates excitement in the field for the participants, stimulates new ideas, attracts new thinkers to the fray and finally because it provides the public at large with an entrée into the world of science at the highest level, exhibiting for them heated arguments between great minds differing on questions vital to them. What could be more exciting?

Personal Genomics Will Arrive This Year, and With It a Revolutionary Wave Of Volunteerism and Self-Knowledge

Reposted from: http://edge.org/q2007/q07_7.html
my highlights in blue


GEORGE CHURCH
Professor of Genetics, Harvard Medical School; Director, Center for Computational Genetics

Personal Genomics Will Arrive This Year, and With It a Revolutionary Wave Of Volunteerism and Self-Knowledge

A small but crucial set of human pursuits have experienced smooth exponential growth for many decades—sometimes so smooth as to be hidden and then revealed with a jolt. These growth industries involve information—reading and writing complex artifacts made of electronic and/or DNA parts. The iconic example is the personal computer, which though traceable back to 1962, became manifest in 1993 when free web browsers spawned millions of personal and commercial web pages within one year. I’m optimistic that something similar is happening to personal genomics this year. We are in free-fall from a stratospheric $3 billion generic genome sequence (which only an expert could love) down to a sea level price for our personal genomic data. Early-adopters are posing and positing how to exploit it, while surrounded by envious and oblivious bystanders. We can now pinpoint the 1% of our genomes which in concert with our environment influences the traits that make us different from one another. Ways to tease out that key 1%, coalesce with "next-generation" DNA reading technology popping up this year, to suddenly bring the street-price down to $3000—about as easy (or hard) to justify as buying some bleeding-edge electronic gadget at an early stage when only minimal software is ready.

I am optimistic that while society is not now ready, it will be this year. The inevitable initial concerns about techno-downsides, e.g. the "Genetic Information Nondiscrimination Act of 2005", are already morphing into concerns about how to make these new gifts useful and reliable. Witness just this August, the US Senate began consideration of the "Genomics and Personalized Medicine Act of 2006". Momentum is thus building for millions of people to volunteer to have their genome data correlated with their physical-traits to benefit the billions who will hang back (due to inertia or uncertainty). These volunteers deserve up-to-the minute education in genetics, media, and privacy issues. They deserve protection, encouragement and maybe even rewards. Many current medical research studies do not encourage their human research subjects to fully fathom the potential identifiability of both their personal genome and physical traits data, nor to learn enough to access and appreciate their own data. The cost of educating the subjects is far less than the other costs of such studies and yields benefits far beyond the immediate need for fully informed consent. In contrast, other studies like the Personal Genome Project, emphasize pre-education sufficient to choose among (1) opting-out of the study completely, (2) de-linking genomic and physical traits, (3) restricting linked data to qualified researchers, (4) allow peer-to-peer sharing, or (5) a fully open public database. The subjects can redact specific items in their records at any point, realizing that items used to support conclusions in published work cannot be easily reversed. The excitement and dedication of these volunteers is already awesome.

I am optimistic that millions more will share. Millions already do share to benefit society (or whatever) in old and new social phenomena ranging from the Red Cross to Wikipedia, from MySpace/YouTube to SEC compensation disclosures. We wear ribbons and openly share personal experiences on topics that were once taboo, hidden from view, like depression, sexual orientation, and cancer. Rabbis' daily tasks now include genetic counseling. Our ability to track disease spread, not just HIV, bird flu, or bioterrorism, but even the common cold, will benefit from the new technologies and the new openness—leading to a bio-weather map. We will learn so much more about ourselves and how we interact with our environment and our fellow humans. We will be able to connect with other people who share our traits. I am optimistic that we will not be de-humanized (continuing the legacy of feudalism and industrial revolution), but we might be re-humanized, relieved of a few more ailments, to contemplate our place in the universe, and transcend out brutal past.

The Climate Optimist

Reposted from: http://edge.org/q2007/q07_6.html
my highlights in blue


WILLIAM CALVIN
Professor, The University of Washington School of Medicine; Author, A Brain For All Seasons

The Climate Optimist

Mention global warming at a seasonal social gathering and see what happens, now that skepticism has turned into concern and sorrow. They will assume that you're a pessimist about our prospects. "Not really," I protest. That earns me a quizzical look.

"Wait a minute," she says. "If you're an optimist, why do you look so worried?"

"So you think it's easy, being an optimist?"

Many scientists look worried these days. We've had a steady diet of bad news coming from climate scientists and biologists. To become even a guarded optimist, you have to think hard.

First, I reflected, the history of science and medicine shows that, once you mechanistically understand what's what, you can approach all sorts of seemingly unsolvable problems. I'm optimistic that we will learn how to stabilize climate.

Unfortunately the window of opportunity is closing. Fifty years have now passed since the first unequivocal scientific warnings of an insulating blanket of CO2 forming around the planet. Politicians apparently decided to wait until something big went wrong.

It has. We have already entered the period of consequences. Climate scientists have long been worried about their children's future. Now they are also worried about their own.

Our Faustian bargain over fossil fuels has come due. Dr. Faustus had 24 years of party-now, pay-later—and indeed, it's exactly 24 years since Ronald Reagan axed the U.S. budget for exploring alternative fuels. This led to doubling our use of cheap coal, the worst of the fossil fuels. They're planning, under business as usual, to re-double coal burning by 2030—even though we can now see the high cost of low price.

The devil's helpers may not have come to take us away, but killer heat waves have started, along with some major complications from global warming. We're already seeing droughts that just won't quit. Deserts keep expanding. Oceans keep acidifying. Greenland keeps melting. Dwindling resources keep triggering genocidal wars with neighbors (think Darfur). Extreme weather keeps trashing the place.

All of them will get worse before they get better.

Worse, tipping points can lead to irreversible demolition derbies. Should another big El Niño occur and last twice as long as in 1983 or 1998, the profound drought could burn down the rain forests in Southeast Asia and the Amazon—and half of all species could go extinct, just within a year or two.

Time has become so short that we must turn around the CO2 situation within a decade to avoid saddling our children with the irreversible consequences of a runaway warming. That means not waiting for a better deal on some post-Kyoto treaty. It means immediately scaling up technologies that we know will work, not waiting for something better that could take decades to debug.

This isn't optional. It is something that we simply have to do. The time for talk is past.

"I see why you're worried," she says. "But what's your optimistic scenario for dealing with this fossil fuel fiasco?"

For starters, I think it likely that the leaders of the major religious groups will soon come to see climate change as a serious failure of stewardship. And once they see our present fossil fuel use as a deeply immoral imposition on other people and unborn generations, their arguments will trump the talk-endlessly-to-buy-time business objections— just as such moral arguments did when ending slavery in the 19th century.

Second, the developed nations are fully capable of kick-starting our response to global warming with present technology—enough to achieve, within ten years, a substantial reduction in their own fossil fuel uses. How?

Wind farmers will prosper as pastures grow modern windmills to keep the cows company.

Giant parking lots, already denuded of trees, are perfect places for acres of solar paneling. Drivers will love the shaded parking spaces they create.

The Carbon Tax will replace most of those deducted from paychecks and create a big wave of retrofitting homes and businesses.

Big brightly lit grocery stores with giant parking lots will compete poorly with warehouses that deliver web and phone orders within the hour, like pizza. Smaller neighborhood grocery stores will once again do a big walk-in business and they will compete with the warehouses by offering "green bicycle" delivery.

High-speed toll gates will become the norm on commuter highways. (Yes, I know, but remember that the paycheck was just enriched by eliminating withholding for income tax.)

Speed limits will be lowered to 50 mph (80 kmh) for fuel efficiency and, as in 1973, drivers will marvel at how smoothly the traffic flows. Double taxes will apply to vehicles with worse-than-average fossil fuel consumption, reducing the number of oversized vehicles with poor streamlining. Hybrids and all-electric cars will begin to dominate new car sales.

A firm, fast schedule will be established for retiring or retrofitting existing coal plants. My bet is that adding nuclear power plants—France gets 78% of its electricity that way, New Jersey 52%—will prove safer, cheaper, and faster than fixing coal.

On the quarter-century time scale, let us assume that the new rapid transit systems will reduce car commuting by half. The transition to electric and hydrogen vehicles will shift transportation's energy demands to greener sources, including biofuels, geothermal, tidal, and wave generation.

The highly efficient binding energy extractors (BEEs, the fourth-generation nuclear power plants) will be running on the spent fuel of the earlier generations.

The low-loss DC transmission lines will allow, via cables under the Bering Strait, solar-generated electricity to flow from the bright side to the dark side of the earth.

And in this 25-year time frame, we ought to see some important new technology making a difference, not just improvements in what we already use. For example, we might encourage rapid adaptation of the whale's favorite food, the tiny phytoplankton which provide half of the oxygen we breathe as they separate the C from the CO2.

Since the shell-forming plankton sink to the ocean bottom when they die, their carbon is taken out of circulation for millions of years. Forests can burn down, releasing their stored carbon in a week, but limestone is forever. If shell-forming plankton could thrive in warmer waters with some selective breeding or a genetic tweak, their numbers might double and start taking our excess CO2 out of circulation.

But even if we invent—and debug—such things tomorrow, it can take several decades before an invention makes a dent in our urgent problem. And all this assumes no bad surprises, such as the next supersized El Niño killing off the Amazon and, once we lack all those trees, increasing the rate of warming by half.

By mid-century, let us suppose that we have begun extracting more CO2 from the atmosphere than we add.

This will only happen if the technology of the developed world has become good enough to compensate for what's still going on in the overstressed nations that are too disorganized to get their energy act together.

When CO2 levels fall enough to counter the delayed warming from past excesses, we will begin to see a reversal of droughts and violent weather— though the rise in sea level will likely continue, a reminder to future generations of our 20th-century Faustian bargain.

As Samuel Johnson said in 1777, "when a man knows he is to be hanged in a fortnight, it concentrates his mind wonderfully."

We need to turn on a dime—by which I mean, close to what we saw in the United States after the bombing of Pearl Harbor.

From a standing start in late 1941, the automakers converted—in a matter of months, not years—more than 1,000 automobile plants across thirty-one states... In one year, General Motors developed, tooled, and completely built from scratch 1,000 Avenger and 1,000 Wildcat aircraft... GM also produced the amphibious 'duck'—a watertight steel hull enclosing a GM six-wheel, 2.5 ton truck that was adaptable to land or water. GM's duck `was designed, tested, built, and off the line in ninety days'... Ford turned out one B-24 [a bomber] every 63 minutes....
— Jack Doyle, Taken for a Ride, 2000

Now there's a source of optimism: we did it before. Indeed, GM currently needs a new purpose in life (and I'd suggest repurposing the manned space program as well). All of that talent is badly needed.

With great challenges come great opportunities and I'm an optimist about our ability to respond with innovation. Countries that innovate early will have an economic edge over the laggards.

Our present civilization is like a magnificent cathedral, back before flying buttresses were retrofitted to stabilize the walls. Civilization now needs a retrofit for stabilizing its foundations. It will be a large undertaking, not unlike those that once went into building pyramids and cathedrals. I'm optimistic that the younger generation can create a better civilization during the major makeover—provided that those currently in the leadership can stop this runaway coal train, real fast.

Climate change is a challenge to the scientists but I suspect that the political leadership has the harder task, given how difficult it is to make people aware of what must be done and get them moving in time. It's going to be like herding stray cats, and the political leaders who can do it will be remembered as the same kind of geniuses who pulled off the American Revolution.