Sunday, January 07, 2007

Emergent Democracy and Global Voices

Reposted from: http://edge.org/q2007/q07_14.html
my highlights in blue

JOICHI ITO
Founder and CEO, Neoteny

Emergent Democracy and Global Voices

I am optimistic that open networks will continue to grow and become available to more and more people. I am optimistic that computers will continue to become cheaper and more available. I am optimistic that the hardware and software will become more open, transparent and free. I am optimistic that the ability to for people to create, share and remix their works will provide a voice to the vast majority of people.

I believe that the Internet, open source and a global culture of discourse and sharing will become the pillar of democracy for the 21st Century. Whereas those in power, as well as terrorists who are not, have used broadcast technology and the mass media of the 20th century against the free world, I am optimistic that Internet will enable the collective voice of the people and that voice will be a voice of reason and good will.

The Human Epigenome Project

JILL NEIMARK
Science Journalist; Co-author, Why Good Things Happen To Good People

The Human Epigenome Project

There are maps, and then there are maps. We're embarking on a kind of mapmaking that will usher in new ways of understanding ourselves-a map that can explain why identical twins are not truly identical, so that one succumbs to schizophrenia while the other remains cognitively intact; why what your mom ate can save or sabotage your health (as well as that of your children and your children's children); and how our genetic fates can be tuned by such simple universals as love or vitamins.

It's The Human Epigenome Project (HEP). It's the next step after the Human Genome Project, which in itself was as audacious as the Apollo space program or the Manhattan Project, mapping 25,000 genes and the 3 billion pairs of bases in our DNA. And yet, what The Human Genome Project mapped is like land without borders, roads without names, a map without movement. Genes are silent unless activated. To have them is not necessarily to be under their influence.

"Land lies in water, it is shadowed green," begins Elizabeth Bishop's classic early poem, "The Map." The double helix lies in the epigenome like land lies in water. The epigenome (wikipedia) is a flute playing a tune that charms the snake-coiled snake that is the code of life-and the snake spirals upward in response. A long bundle of biochemical markers all along the genome, the epigenome responds to environmental signals and then switches genes off or on, upregulates or downregulates their activity. And in that change lies a great part of our destiny.

In 2003, in a widely discussed experiment, scientist Randy Jirtle of Duke University Medical Center in Durham, North Carolina, showed that he could change the activity of a mouse's genes by giving supplements to its mom prior to, or during, very early pregnancy. A mouse with yellow fur, whose offspring would normally also be yellow, will give birth to brown-furred babies if fed a diet supplemented with vitamin B12, folic acid, betaine and choline. Even the offspring of the mom's offspring will be born with brown fur. The genes themselves have not changed at all, but their expression has, and that lasts for at least two generations. And a fungicide used on fruits led to sperm abnormalities in rats-abnormalities passed down at least four generations. This gives us insight into nature's ways: apparently she figures any change in the food supply will last a while, and isn't just a seasonal fling.

Then, in 2004, Moshe Szyf, Michael Meaney and their colleagues at McGill University in Montreal, Canada, showed that love can work in a similar way. If mothers don't lick, groom and nurse their babies enough, a molecular tag known as a methyl group-a tiny molecule made of three hydrogen atoms bound to a single carbon atom-is added to a gene that helps regulate an animal's response to stress. In pups that aren't nurtured properly, the methyl group downregulates the genes' activity for life. The pups have higher levels of stress hormones and are more afraid to explore new environments. What is nature saying? If a mom didn't attend to her newborn much, it's probably because the environment was hostile and stressful. Better to be vigilant and cautious, even afraid. Later, Meany and his colleagues showed that a common food supplement could do exactly the same thing to the genes of well-licked and nurtured rats. Once the pups were three months old, researchers injected a common amino acid, L-methionine, into their brains. This methylated the same gene, downregulated it, and turned the rats into anxious wallflowers.

Last June, the European Human Epigenome Project published its first findings on the methylation profiles, or epigenetics, of three chromosomes. The push to map the epigenome is on. In the last few weeks alone I've seen very different epigenetic stories coming across the science wires. From the University of Texas Medical Branch at Galveston came the news that breastfeeding protects children who are genetically susceptible to repeated ear infections because of common variants in their genes. The tendency toward ear infections runs in families, and researchers found the culprit in two gene variants that increase inflammatory signaling molecules in the immune system. Remarkably, breast milk seemed to permanently quiet the genes, so that even later in childhood, long after the children had stopped breastfeeding, they were protected from recurrent infections.

In research from the Universidad Nacional Autonoma de Mexico and the Instituto Nacional de Cancerologia, Mexico, epigenetic drugs are now being studied in breast, ovarian and cervical cancer. These drugs affect genes that, when reactivated, help regulate cell proliferation, cell death, cell differentiation, and drug resistance. They're cheaper than designer-name cancer drugs, and might help increase survival rates.

Even water fleas are joining the epigenetic act. In a December study from the University of California at Berkeley expression of genes in water fleas changed in response to common contaminants. Water fleas are regularly used to monitor freshwater toxicity, usually with a "kill 'em and count 'em" approach. Researchers found that copper, cadmium and zinc decreased expression of genes involved in digestion and infection. Screening like this might help industry assess and avoid particularly toxic contaminants.

Epigenetics offers us a different kind of map. One where we can zoom in and zoom out. A map of many colors, with street signs so we can navigate, routes that we can choose, destinations that we can change. Maybe the gene isn't selfish. Maybe it's actually sensitive. "More delicate than the historian's are the mapmaker's colors." So concludes Elizabeth Bishop's poem, and the epigenome may prove to be one of the more beautiful, delicate, subtle maps of all time.

Physics Will Not Achieve a Theory of Everything

Reposted from: http://edge.org/q2007/q07_14.html
my highlights in blue

FRANK WILCZEK
Physicist, MIT; Recipient, 2004 Nobel Prize in Physics; Author, Fantastic Realities

Physics Will Not Achieve a Theory of Everything

I'm optimistic that physics will not achieve a Theory of Everything.

That might seem an odd thing to be optimistic about. Many of my colleagues in physics are inspired by the prospect of achieving a Theory of Everything. Some even claim that they've already got it. (Acknowledging, to be sure, that perhaps a few i's remain to be dotted or a few t's to be crossed.) My advice, dear colleagues: Be careful what you wish for. If you reflect for a moment on what the words actually mean, a Theory of Everything may not appear so attractive. It would imply that the world could no longer surprise us, and had no more to teach us.

I don't buy it. I'm optimistic that the world will continue to surprise us in fascinating and fundamental ways.

Simply writing down the laws or equations is a long way from being able to anticipate their consequences. Few physicists—and no sober ones—seriously expect future work in fundamental physics to exhaust, for example, neuroscience.

A less literal reading of "Theory of Everything" is closer to what physicists who use it mean by it. It's supposed to be a theory, not really of everything, but of "everything fundamental". And here "fundamental" is also being used in an unusual, technical sense. A more precise word here might be "basic" or "irreducible". That is, the physicists' Theory of Everything is supposed to provide all the laws that can't be derived logically, even in principle, from other laws. The structure of DNA surely emerges—in principle—from the equations of the standard model, and I strongly suspect that the possibility of Mind does too. So those phenomena, while they are vastly important and clearly fundamental in the usual sense, aren't fundamental in the technical sense, and elucidating them is not part of a Theory of Everything.

I think we're about to enter a new Golden Age in fundamental physics. The Large Hadron Collider (LHC), which should begin to operate at CERN, near Geneva, starting in summer 2007, will probe the behavior of matter at energies higher than ever accessed before. There is no consensus about what we'll find there. I'm still fond of a calculation that Savas Dimopoulos, Stuart Raby and I did in 1981. We found—speaking roughly—that we could unify the description of fundamental interactions (gauge unification) only within an expanded version of relativity, which includes transformations of spin (supersymmetry). To make that dual unification we had to bring in new particles, which were too heavy to be observed at the time, but ought to be coming into range at the LHC. If they do exist we'll have a new world of phenomena to discover and explore. The astronomical riddle of dark matter could well be found there. Several competing ideas are in play, as well. The point is that whatever happens, experimenters will be making fundamental discoveries that take us by surprise. That would be impossible, if we had a Theory of Everything in the sense just described—that is, of everything fundamental.

In recent months a different, much weaker notion of what a "Theory of Everything" might accomplish has gained ground, largely inspired by developments in string theory. In this concept, the Theory provides a unique set of equations, but those equations that have many solutions, which are realized in different parts of the Universe. One speaks instead of a multiverse, composed of many domains, each forming a universe in itself, each with its own distinctive laws. Now even the fundamental—i.e., basic, irreducible—laws are beyond the power of the Theory to supply, since they vary from universe to universe. At this point the contrast between the grandeur of the words "Theory of Everything" and the meager information delivered becomes grotesque.

The glamour of the quest for a Theory of Everything, or a Final Theory, harks back Einstein's long quest for his version, a Unified Field Theory. Lest we forget, that quest was fruitless. During his great creative period, Einstein produced marvelous theories of particular things: Brownian motion, the photoelectric effect, the electrodynamics of moving bodies, the equality of inertial and gravitational mass. I take inspiration from the early Einstein, the creative opportunist who consulted Nature, rather than the later "all-or-nothing" romantic who tried (and failed) to dictate to Her. I'm optimistic that She'll continue to surprise me, and my successors, for a long time.

Communications empower mankind

Reposted from: http://edge.org/q2007/q07_13.html
my highlights in blue

ALEX (SANDY) PENTLAND
Computer Scientist, MIT Media Laboratory

The Human Nervous System Has Come Alive

Ten years ago, half of humanity had never made a phone call and only 20% of humanity had regular access to communications. Today 70% of humanity can place a telephone call or, more likely, send an SMS message… to the Secretary General of the United Nations, or to most anyone else. For the first time the majority of humanity is connected and has a voice.

Adults in Western culture fail to appreciate the momentous nature of this change because our mindsets are tied to lumbering legacy technologies like PCs and laptops. But in most countries, and for virtually all youth, the way to maintain your social network and run your business is by cell phone.

Digital connections allow public services to be transformed. In much of Africa, health workers survey the spread of disease, advise expectant mothers, and coordinate health services by digital messaging over cell phones. In tests, the digital system is both ten times faster than the old paper system—allowing health workers to nip epidemics in the bud—and ten times cheaper, despite the fact that phones cost more than paper.

Governance is also being transformed. Not only have the heads of governments been brought down by SMS-organized protests, but multilateral organizations such as the WTO have been brought to account as well. More subtle, but perhaps even more important, the traceable nature of digital transactions means that banking and government services offered by cell phone are more transparent and accountable than the older systems. An example of this capability in action is that governments such as India claim that the vast majority of captured terrorists have been identified through cell phone transactions.

Perhaps most importantly connection means improved efficiency and greater wealth. In some parts of Africa and south Asia, banking is done by moving around the money in cell phone accounts and people pay for vegetables and taxi rides by SMS. Because remanufactured cell phones cost $10 in the developing world and incoming messages are free, every stratum of society is connected. Day laborers, for instance, no longer hang around a street corner waiting to be picked for work. Instead, job offers arrive by SMS from a computerized clearing house. The International Telecommunications Union estimates that in the poorest countries each additional cell phone installed adds $3000 to the GDP, primarily due to the increased efficiency of business processes.

My conclusion is that is that the human race finally has a working nervous system, and that the poor and disenfranchised are for the first time beginning to make themselves heard and felt. To accelerate this process, we have established the Program for Developmental Entrepreneurship at MIT (web.mit.edu/de), which helps form, fund, and scale in-country efforts that leverage these new capabilities. The possibilities opened up by humanity's new nervous system are unprecedented, and reason for great optimism.

the War between Science and Religion will see New Light

Reposted from: http://edge.org/q2007/q07_13.html
my highlights in blue

MARCELO GLEISER
Physicist, Dartmouth College; Author, The Prophet and the Astronomer

That the Debate or, Should I Say, War, Between Science and Religion Will See New Light

I'm optimistic that the debate or, should I say, war, between science and religion will see new light. Right now, the fracturing seems to be worsening, as further entrenchment occurs on both sides. Books from Edge colleagues trashing religion as collective hallucination or delusion, or, better still, as idiotic superstition, carry a simple message to people outside the sciences: we are as radical as the religious extremists, as inflexible and intolerant as the movements we seek to exterminate by our oh-so-crystal-clear-and-irresistibly-compelling rationalizations.

Although I'm also an atheist, I do not forget what is behind the power of religious thought. Quite simply: hope. Life is though, people suffer, and, rightly or wrongly, religion offers something for people to hold on to. Yes, it's wild to believe in supernatural influences in the world, yes it's crazy to devote your life to a God that seems to have vanished from the world for, under conservative estimates, "at least" 2000 years. But scientists cannot forget that most people need some sort of spiritual guidance, a kind of guidance science, at least as is taught today, cannot offer. Science has shown, and keeps showing, that we live in a cold, hard universe, completely indifferent to us and to life. And yet, people love, die, connect, fight, and must come to some sort of inner peace, of acceptance. What can science offer these people?

It is futile and naive to simply dismiss the real need people have for spirituality.

My hope is that people will begin to see science as a vehicle for mutual understanding and for respecting life. The more we study life and its mechanisms, the more we realize how rare it is, how precious it is. Sure, there may be life elsewhere, and it may even be intelligent. However, even if this is the case, odds are we are still going to be stuck with ourselves, in this planet or our solar neighborhood, for quite some time. Either we learn that science teaches us humility and respect for life and the environment, or we exterminate this most precious cosmic jewel. I am optimistic that scientists will teach people these lessons, instead of simply try to rob them of their faith and offering nothing in return.

the ever-accelerating Empowerment of people

Reposted from: http://edge.org/q2007/q07_13.html
my highlights in blue

BRIAN ENO
Artist; Composer; Recording Producer: U2, Talking Heads, Paul Simon; Recording Artist

And Now the Good News

Things change for the better either because something went wrong or because something went right. Recently we've seen an example of the former, and this failures fill me with optimism.

The acceptance of the reality of global warming has, in the words of Sir Nicholas Stern in his report on climate change to the British government, shown us 'the greatest and widest ranging market failure ever seen'.

The currency of conservatism for the last century has been that markets are smarter than governments: and this creed has reinforced the conservative resistance to anything resembling binding international agreements. The suggestion that global warming represents a failure of the market is therefore important. Technical solutions will hopefully be found, but the process will need to be primed and stoked and enforced by legislation that would be regarded as big government socialism in the present climate. The future may be a bit more like Sweden and a bit less like America.

If a single first instance of global governance proves successful, it will strengthen its appeal as a way of addressing other problems —such as weapons control, energy management, money-laundering, conflict resolution, people-trafficking, slavery, and poverty. It will become increasingly difficult for countries to stay outside of future treaties like Kyoto—partly because of international pressure but increasingly because of pressure from their own populations.

Which brings me to my main reason for optimism: the ever-accelerating empowerment of people. The world is on the move, communicating and connecting and coalescing into influential blocks which will move power away from national governments with their short time horizons and out into vaguer, more global consensual groups. Something like real democracy (and a fair amount of interim chaos) could be on the horizon.

The Internet is catalyzing knowledge, innovation and social change, and, in manifestations such as Wikipedia, proving that there are other models of social and cultural evolution: that you don't need centralised top-down control to produce intelligent results.

The bottom-up lesson of Darwinism, so difficult for previous generations, comes more naturally to the current generation. There is a real revolution in thinking going on at all cultural levels: people comfortably cooperate to play games for which the rules have not yet been written with people they've never met, listen to music and look at art which is emergent, not predetermined, and accept the wiki model of the open-source evolution of knowledge.

All these represent dramatic and promising changes in the way people are thinking about how things work, how things come into being and how they evolve.

Optimism about Climate Change & Stem Cells

Reposted from: http://edge.org/q2007/q07_13.html
my highlights in blue

COLIN BLAKEMORE
Chief Executive, Medical Research Council;Waynflete Professor of Physiology, University of Oxford


Things will—er—get better

I'm hugely optimistic that things will be better in 2007 than they have been in 2006. What things, you might ask. Well, lots of things. Let's take a couple of things that are on the minds of many scientists—climate change and stem cells. In both cases, the imperative for action on the basis of scientific evidence is clear. But in both cases, other forces have intervened to frustrate progress.

For climate change, the obstacles are short-sighted commercial interests and short-term political interests—let's call them myopeconomics and myopolitics. Many businessmen still judge that their own fortunes and those of their shareholders are best served by ignoring the doom-mongers and pumping out the carbon dioxide to make money. A few politicians—one in particular—still think that their own political standing, and their place in history, are favoured by denying the growingly obvious. But the consequences of climate change are accruing non-linearly. A point must come at which the impact of change will fall within the near-point of those refractory industrialists and politicians. When that happens, the rules will suddenly reverse. Both business and politics will be better served by response than denial. I predict that the tipping point will come in 2007. Political skeptics will become passionate converts, eager to claim the historical credit for recognising the inevitable. The burners will become preservers.

I should make it clear that what I am optimistic about here is the likelihood of a change in attitude; not, alas, about the probability of rapid success in the monstrous task of reversing the effects of a century of profligacy. We are going to have to live with the consequences of our parents' actions, and our children with the consequences of ours. The issue is whether our children's children will inherit a world worth living in.

For stem cells—or, to be more specific, human embryonic stem cells—the barriers to progress are not economic but moral. On the one hand, biomedical science offers the hope of cellular immortality—the prospect of repairing a damaged brain, heart or pancreas, just as grazed skin or a bitten tongue already mends itself. On the other hand, a substantial cohort of politicians and religious leaders (more exactly Catholic and fundamental Protestant leaders), especially in the United States and some European countries, fiercely oppose the taking of life in the interests of other lives. Although the balance of arguments seems quite different from that for climate change, interestingly, the crux of the problem is again the power of intuition over the cold rationality of science. I have heard a ‘pro-life' lobbyist describe the collection of stem cells from 10-day-old embryos, surplus to the requirements of in-vitro fertilization, as "the evisceration of little babies". Life, it is argued, begins at the moment of conception.

Most scientists would surely argue that a pre-implantation embryo, smaller than the point of a needle, without a single nerve cell, let alone any viscera, cannot possibly be considered a person. Defining the starting point of life is not a matter of dogma but of social consensus. As my friend, Nobel Laureate, Eric Kandel put it: "Life begins when the kids are all through College and the dog dies"!

Then, given these absolutist arguments, why should I be optimistic about a change in attitude to stem cell research in 2007? Because morality is, for all but the most stubbornly impervious to practical evidence, a matter of utilitarian dialectic. Yesterday's moral outrage has a way of becoming today's necessary evil and tomorrow's common good. Just as with climate change, what will cause a swing of attitude is the turning point of a mathematical function; in this case the shifting ratio of perceived benefit to theoretical cost.

Just a few weeks ago, a team of scientists from the Institute of Ophthalmology, the Institute of Child Health and Moorfields Eye Hospital in London (supported, I'm delighted to say, by the Medical Research Council) reported that they had restored sight to considerably more than Three Blind Mice, by transplanting into their eyes immature photoreceptor cells (midway between stem cells and fully formed rods and cones). Rats that have suffered strokes have been vastly improved by the transplantation of nerve-making cells into their brains. The first attempts will soon begin at repairing severed human spinal cords with the help of transplanted stem cells. The evidence of likely benefit is growing fast. No miracles yet, but a trickle of hope, which is likely to become a steady stream in 2007. I predict that the immorality of not helping the undeniably-living sick will soon outweigh the good of protecting the never-to-be-born. Just as with climate change, the angels might switch in 2007.

There we are. That's what I'm optimistic about. The problem is that I'm by nature an optimist. I see the world through those legendary rose-tinted spectacles. My glass is forever half-full. Interesting, isn't it, how many clichés there are for being optimistic. Doesn't that suggest that optimism-pessimism is as much a fundamental dimension of human nature as extraversion-introversion, happiness-sadness, energy-slothfulness? Being optimistic about a particular eventuality is more a comment on the believer than the belief. So, what I'm really optimistic about is that that I won't be devastated even if my predictions are less than perfect.

as populations shrink, demands on resources will reduce - Nature will begin to repair itself

Reposted from: http://edge.org/q2007/q07_13.html
my highlights in blue

W. DANIEL HILLIS
Physicist, Computer Scientist; Chairman, Applied Minds, Inc.; Author,
The Pattern on the Stone

The Long View of Demographics

I am optimistic about humankind's ability to reach a sustainable balance with other life on earth, in part because the number of humans on earth will soon start to decrease. This doesn't mean that I think we should ignore our environmental problem—just the opposite: I think we should fight hard now with the confidence that we can win a complete and lasting victory.

We are so accustomed to watching the explosion of human growth and development that it is easy to imagine that this is normal. It is not. We are the first generation in history that has watched the human population double in our own lifetime, and no future generation is likely to see it again. All of those blights of growth that we have come to accept—crowded cites, jammed roads, expanding suburbs, fish-depleted oceans, and tree-stripped forests—are all symptoms of a one-of-a-kind surge in human expansion. Soon they will be just memories.

There are currently over six billion people in the world. There will probably never be more than ten. Population forecasts vary, but they all agree that human population growth is slowing. As people become more prosperous, they have smaller families. In every country where women are allowed free access to education and health care, rates of population growth are going down. Sometimes the trends are hidden by the delays of demographics, but the real population growth rates are already negative in Europe, China, and, if we subtract immigration, in the United States. The total human population is still growing, but not as fast as it once was. Assuming that these trends continue, the total population of the world will be shrinking well before end of this century.

This long view of demographics allows me to be optimistic even though almost every other measure of environmental health is deteriorating. We are suffering from our binge of growth, and the parts of our world that are the last to binge are suffering the most. The binge is not just in size of population, but also in the level of consumption. Yet, here too there is reason for optimism. We are so wasteful in our use of resources that there are huge opportunities for improvement. With more efficient technologies, our fundamental requirements for food, materials, and energy should be well within the carrying capacity of our planet. We should be able to support the peak of human population at a higher standard of living than the richest nations have today.

There is no doubt that the environmental challenges of the next decades are daunting, and they will require all the power of human striving and creativity to overcome them. Yet, I have no doubt that we will succeed. Innovation, good will, and determined effort will be enough to handle the next few billion people. Then as populations shrink, demands on resources will be reduced. Nature will begin to repair itself, reclaiming what we have so hastily taken. I hope we manage to keep the gorillas, elephants and rhinoceroses alive. By the end of the century, they will have room to roam.

The Rich: Happiness is Philanthropy

Reposted from: http://edge.org/q2007/q07_12.html
my highlights in blue

JASON MCCABE CALACANIS
Entrepreneur in Action, Sequoia Capital

Eudaemonia: The Third form Of Happiness

Capitalism has become more aligned with the forces of good ( i.e. philanthropy) than greed. As the polarization of wealth peaked over the past decade the press and public became obsessed with "greed is good" meme in the 80s, and the "rules don't apply to the rich" 90s (think Enron, Worldcom, dotcom). However, the real story was brewing and we read it first on Edge and witnessed it in Ted Turner's gift to the UN.

The most successful businesspeople in the world have decided to put their brains and bank accounts toward fixing the world, leaving politics and politicians on the sidelines. Bill Gates, Warren Buffet, Richard Branson, John Doerr, and Pierre Omidyar — among many others — are demonstrating that the true goal of winning is giving. The brass ring has moved from private aviation and mega-yachts, to making a mega-pledge at Bill Clinton's annual summit.

Edge's ongoing discussions on happiness are clearly documenting (contributing to?) the trend. As psychologist Martin E.P. Seligman noted in his 2004 Edge feature, "Eudaemonia, The Good Life": "The third form of happiness, which is meaning, is again knowing what your highest strengths are and deploying those in the service of something you believe is larger than you are. There's no shortcut to that. That's what life is about."

Metcalfe's Law of Minds


Reposted from: http://edge.org/q2007/q07_11.html my highlights in blue

CHRIS ANDERSON
Editor in Chief, Wired Magazine; Author, The Long Tail

Metcalfe's Law of Minds
Our species is unique in its ability to use communications to spread learning across populations, allowing us to get smarter and more capable far more quickly than evolution alone would allow. What makes me continually hopeful is that those tools of communications continue to get so much better, so much faster. Anyone who can explore Wikipedia and not be both humbled and filled with confidence in the collective potential in the people all around us is a cynic indeed. And we've only just scratched the surface of such networked intelligence.

Metcalfe's Law says that value of a networks grows with the square of the number of nodes. Today's Web, which is as much about contributing as it is consuming — two-way links, as opposed to the old one-way networks of broadcast and traditional media — allows the same to apply to people. Connecting minds allows our collective intelligence to grow with each person who joins the global conversation. This information propagation process, which was once found in just a few cultures of shared knowledge, such as academic science, is now seen online in everything from hobbies to history. The result, I think, will be the fastest increasing in human knowledge in history.

This morning I was explaining to a nine-year-old about Moore's Law and the magical power of the continuous learning curve. "Will it ever end?" he asked. "I don't see why it should," I answered. That's optimism for you.

Scientists and the Scientific Method

Reposted from: http://edge.org/q2007/q07_11.html
my highlights in blue

KARL SABBAGH
Writer and Television Producer; Author, The Riemann Hypothesis

The Optimism of Scientists

To ask "what am I optimistic about?" is rather like asking "what am I tall about? or "what am I English about?" For me, optimism is a personal characteristic rather than an attitude to be applied to some things and not others. Fortunately it is a characteristic that many scientists have and others acquire, and I am optimistic that this optimism will continue to be a unique human characteristic. Without optimism, why would anyone embark on the complex and interrelated series of steps that makes up any scientific experiment, let alone huge enterprises like the Manhattan or Apollo projects? And faced with disasters like Challenger and Columbia, and the results of inquiries into how they happen, how could anyone have the faith to continue unless they were extremely optimistic?

The Large Hadron Collider at CERN is perhaps the greatest testament to this optimism. Conceived decades ago, absorbing two and a half billion dollars, a collaboration between over 40 countries, designed to accelerate invisible particles to 99.999999 the speed of light and to create a theoretical entity, the Higgs Boson, for which no evidence exists — if this is not a triumph of optimism over realism, I don't know what is.

And I believe this optimism is more than just logical and reasoned inference from previous researches. Scientists are optimistic about science in general as a tool for discovery. They believe that the methods of science will produce valid results. They believe that whatever aspect of the universe they turn their attention towards, even if never previously explored, they can design experiments and carry out observations that will be valid and provide sustainable increments in our understanding. Is this optimism unique to science? I believe it is. No one has such strong faith in the future benefits of politics or economics or art or philosophy or technology. Some favour capitalism, others socialism; some favour nuclear power, others renewable energy; some believe in a wide-ranging humanistic education, others believe in vocational training; some believe in nationalism, others in internationalism. But scientists believe in science — that is an indication of their optimism.

Altruism on the Web

Reposted from: http://edge.org/q2007/q07_10.html
my highlights in blue

DAN SPERBER
Social and cognitive scientist; Directeur de Recherche, CNRS, Paris; Author,
Rethinking Symbolism

Altruism on the Web

Had the question been, "What are you pessimistic about?" I would have answered: If there is any progress in human wisdom (and, yes, I suppose there is) it is pathetically slow, while ever faster technological advances provide the means for self-righteous, unwise people with power, wealth, or charisma to cause greater and greater havoc. I don't alas have any equally broad and compelling reasons to be optimistic about the future of humankind. Humans, however, are full of surprises, many of them excellent, arousing new hopes every day.

"From each according to his ability, to each according to his needs," so did Marx define communism. Outside of narrow kinship or friendship groups, this kind of altruistic sharing of resources has hardly ever been encountered, and it is not difficult to understand why: Such a utopia, however attractive, is quite impractical. Yet, with the advent of the new information technologies and in particular of the Web, a limited form of informational 'communism' that no one had predicted has emerged and is fast developing. A vast array of technological, intellectual and artistic creations, many of them of outstanding quality, are being made freely available to all according to their needs by individuals working according to the best of their abilities and often seeking self-realization even more than recognition. I have in mind the freeware, the wikis, the open source programs, the open access documents, the million of blogs and personal pages, the online text, image, and music and libraries, the free websites catering to all kind of needs and constituencies. Who had been optimistic enough to expect not just the existence of this movement, but its expansion, its force, its capacity to rival commercial products and major businesses and to create new kinds of services, blogs for instance, of great social and cultural import even if of limited economic value?

Cynics or realists—call them what you want—might say: Economic benefit is still the main force driving innovation. Gifted disinterested amateurs—if that is truly what they are—are a welcome anomaly spurring competition, but what matter to the end user is the utility of the product. A cheaper product, and a fortiori a free one, is preferable, everything else being equal, but businesses, by providing extra quality worth the cost, make it sure that everything is rarely equal. So let us praise innovation wherever it comes from, paying the price when justified and mouthing a word of praise when it comes free. But let us not read too much—informational communism? Give me a break—into a probably ephemeral sociological oddity. As many others have noted, the economics of information are peculiar, if only because you can give information without losing it and you may gain from giving it as much or more as from receiving it. Applying a standard economic model to the movement of information on the Web may not be the best science (actually, applying a standard economic model to standard economic situations may not be the best science either).

I am optimistic about the development of both individual and collective forms of altruism on the Web. Moreover, I believe that what we see on the Web has more diffuse counterparts in society at large. The Web is a network of networks where, at every individual node, many communities overlap, and where local allegiances have at best a weak hold. The World Wide Web is the most dynamic and visible manifestation, and a driving force of a world that is itself becoming one wide web. In this world, more and more altruistic acts—acts that had in ancestral times been aimed just at one's kin, and later extended to tribe, sect, or country—may now, out of sensible sense of common destiny, be intended for the benefit of all. No Hallelujah however. If our destiny is indeed ever more common, it is because we all stand to suffer from the misdeed of a few as much as to benefit from the generous actions of many.