Monday, January 08, 2007

How the Universe inevitably winds down

Reposted from: http://edge.org/q2007/q07_16.html
my highlights in blue

GEORGE F. SMOOT
Cosmologist, Lawrence Berkeley National Laboratory; Recipient, The Nobel Prize For Physics 2006; Coauthor, Wrinkles in Time

Correggio Domani e for peggio! — Courage for Tomorrow Will Be Worse! (The Words of a Born Optimist)

A careful assessment and years of experience that show that the long-term future is most bleak: Entropy will continue to increase, and a heat death (actually a misnomer as it means the degredation of usable energy in a dull cooling worthless background of chaos) is the very likely fate of the world. This is the fate that awaits us, if we manage to work our way past the energy crisis that looms as the Sun runs out of fuel and in its death throws expands as red giant star likely to engulf us after boiling away the seas before it collapses back to a slowly cooling cinder eventually to leave the solar system in cold darkness.

This energy crisis will eventually spread to the whole Milky Way Galaxy which will use up its available energy resources in a time scale of roughly ten times the present 14 billion year lifetime of our observed Universe. In that same time the accelerating expansion of the Universe continually reduces what we can observe and potentially access until in the distant future only the cinders of stars in our own galaxy are left. Argument goes on whether a sufficiently advanced intelligent society could manage to live (continue to have experiences and process new information and create new things) indefinitely in such an environment taking on the most carefully constructed and extreme measures that are physically possible. The chances of success look relatively low for even the most optimally managed and intelligent society.

Given this and the history of human society in cooperatively plundering the resources of a meager but beautiful planet with currently abundant resources, who can possibly be optimistic about the long-term future of humanity? How many examples do we have of humans addressing global problems in an efficient way and with enlightened self-interest? Historical experience is that humans have generally been engaged in warfare, exploitation for personal gain and religious strife. Real issues are generally not addressed until they become serious crises and often not even then. We could mention here, various episodes of genocide, large-scale pollution, and ecological devastation, which are often interrelated.

In this background the rise of culture and science is remarkable. That is until we understand their usefulness. In our modern world it is clear that material rewards and political power accrue to those that have the most scientific and technological knowledge and the educated workforce with the cultural background of hard productive work as part of a larger system. Such societies have economic and military success and large tax revenues.

Is it this culture and knowledge that offers us hope to be at least as successful as the dinosaurs which dominated the Earth for nearly 100 times as long as humans have held sway? It is often said that the United States systematically underestimates the stubbornness preventing the peaceful resolution of long-term ethnic and tribal conflicts — perhaps because of being the melting pot of waves of peaceful immigration — less a few Indian wars. However, could humans share the planet with reptiles? Or how about intelligent machines? Could they share with us?

Now leaving cultural and religious value systems aside, let us move to realistic assessment of the title "Courage for Tomorrow will be Worse". Every physical process in the Universe follows the second law of thermodynamics. That is in every process entropy (a measure of disorder which equals loss of information and usefulness) will tend to increase for the Universe as a whole. No process decreases the entropy of the Universe. Only completely reversible processes leave it unchanged. All living things and all man-made machines operate with processes that increase the entropy of the Universe.

One cannot live by the Hippocratic dictum "Do no harm". But the best one can hope for is the weak mantra "Do minimal damage". I was often bothered by this inevitable conclusion and tried to see that if one could write a great work of literature, make art, or most optimally a great science discovery could one objectively leave the world better than one found it? Each time I worked out an example, the impact was negligible however great it was found by human culture compared to the damage done by mere existence. The only discovery that would make a difference called for repealing or avoiding the laws of probability or making a whole new universe. Both of these are quite extreme. Perhaps the discovery of extra dimensions would allow some leeway in what otherwise seems an inescapable doom after a long period of unrighteous degradation of the universe. We face a continuous downward spiral of no return. This is not a moral or ethical statement only an engineering evaluation though it is some indication of original sin. So even living one's life as a vegetarian that only eats fruit dropped into one's hand by a willing plant is only going so far as to be very kind and considerate to other beings that are also worsening the universe for the sake of a little more order in their own self.

With such sure knowledge of one's own impending demise as well as for all humanity, how can one get up and face each day with any hope? Well in science it is a central tenet to be skeptical and to question and as certain as this seems, one could cling to a shred of hope that there is some trap door of escape that will be found and opened either because of the greatness and infinite flexibility of mankind or our incredible ingenuity under extreme pressure. I suspect that the odds of winning the lottery are higher — much higher.

"perchè sai che domani sarà impossibile anche alla tua astuzia." (poet Eugenio Montale)

"because you know that tomorrow it will be impossible no matter how astute you are." (translation by Jody Fitzhardinge & Lorenzo Matteoli)

Instead one might look to the definition of courage and optimism and go forth cheerfully and eagerly even when there isn't the smallest sliver of hope and still do great and glorious deeds, build great civilizations even in the face of their inevitable doom.

It takes real optimism and courage to go forth when the inevitable course for the universe is downhill and knowing that all humanity has done or is likely to do will probably have less impact than a footprint on sand after a few dozen or thousand waves pass over it.

I am from the very beginning an optimist and remain so right to the very end.

I invest time and effort into my work, my health and fund my retirement plan fully.

I even write articles and spend much of my days training and educating the next generation. Why do I do this? Because I think that the future, on my human and longer time scale, can be very bright as long as humans work well and intelligently.

I look forward to the immediate future as a part of the long human slog towards a better culture and society in spite of the constant flux of misguided craziness.

New Prospects of Immortality

Reposted from: http://edge.org/q2007/q07_16.html
my highlights in blue

MARVIN MINSKY
Computer Scientist;
1st Generation Artificial Intelligence Pioneer, MIT
; Author, The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind

New Prospects of Immortality

Benjamin Franklin: I wish it were possible... to invent a method of embalming drowned persons, in such a manner that they might be recalled to life at any period, however distant; for having a very ardent desire to see and observe the state of America a hundred years hence, I should prefer to an ordinary death, being immersed with a few friends in a cask of Madeira, until that time, then to be recalled to life by the solar warmth of my dear country! But... in all probability, we live in a century too little advanced, and too near the infancy of science, to see such an art brought in our time to its perfection.
—Letter to Jacques Dubourg, April 1773

Eternal life may come within our reach once we understand enough about how our knowledge and mental processes are embodied in our brains. For then we should be able to duplicate that information — and then into more robust machinery. This might be possible late in this century, in view of how much we are learning about how human brains work — and the growth of computer capacities.

However, this could have been possible long ago if the progress of science had not succumbed to the spread of monotheistic religions. For as early as 250 BCE, Archimedes was well on the way toward modern physics and calculus. So in an alternate version of history (in which the pursuit of science did not decline) just a few more centuries could have allowed the likes of Newton, Maxwell, Gauss, and Pasteur to anticipate our present state of knowledge about physics, mathematics, and biology. Then perhaps by 300 AD we could have learned so much about the mechanics of minds that citizens could decide on the lengths of their lives.

I'm sure that not all scholars would agree that religion retarded the progress of science. However, the above scenario seems to suggest that Pascal was wrong when he concluded that only faith could offer salvation. For if science had not lost those millennia, we might be already be able to transfer our minds into our machines. If so, then you could rightly complain that religions have deprived you of the option of having an afterlife!

Do we really want to lengthen our lives?

Woody Allen: I don't want to achieve immortality through my work. I want to achieve it through not dying.

In discussing this prospect with various groups, I was surprised to find that the idea of extending one's lifetime to thousands of years was often seen as a dismal suggestion. The response to my several informal polls included such objections as these: "Why would anyone want to live for a thousand hundred years? What if you outlived all your friends? What would you do with all that time? Wouldn't one's life become terribly boring?"

What can one conclude from this? Perhaps some of those persons lived with a sense that they did not deserve to live so long. Perhaps others did not regard themselves as having worthy long term goals. In any case, I find it worrisome that so many of our citizens are resigned to die. A planetful of people who feel that they do not have much to lose: surely this could be dangerous. (I neglected to ask the religious ones why perpetual heaven would be less boring.)

However, my scientist friends showed few such concerns: "There are countless things that I want to find out, and so many problems I want to solve, that I could use many centuries." I'll grant that religious beliefs can bring mental relief and emotional peace—but I question whether these, alone, should be seen as commendable long-term goals.

The quality of extended lives

Anatole France: The average man, who does not know what to do with his life, wants another one which will last forever.

Certainly, immortality would seem unattractive if it meant endless infirmity, debility, and dependency upon others—but here we'll assume a state of perfect health. A somewhat sounder concern might be that the old ones should die to make room for young ones with newer ideas. However, this leaves out the likelihood that are many important ideas that no human person could reach in, say, less than a few hundred well focused years. If so, then a limited lifespan might deprive us of great oceans of wisdom that no one can grasp.

In any case, such objections are shortsighted because, once we embody our minds in machines, we'll find ways to expand their capacities. You'll be able to edit your former mind, or merge it with parts of other minds — or develop completely new ways to think. Furthermore, our future technologies will no longer constrain us to think at the crawling pace of "real time." The events in our computers already proceed a millions times faster than those in our brain. To such beings, a minute might seem as long as a human year.

How could we download a human mind?

Today we are only beginning to understand the machinery of our human brains, but we already have many different theories about how those organs embody the processes that we call our minds. We often hear arguments about which of those different theories are right — but those often are the wrong questions to ask, because we know that every brain has hundreds of different specialized regions that work in different ways. I have suggested a dozen different ways in which our brains might represent our skill and memories. It could be many years before we know which structures and functions we'll need to reproduce.

(No such copies can yet be made today, so if you want immortality, your only present option is to have your brain preserved by a Cryonics company. However, improving this field still needs further research — but there is not enough funding for this today — although the same research is also needed for advancing the field of transplanting organs.)

Some writers have even suggested that, to make a working copy of a mind, one might have to include many small details about the connections among all the cells of a brain; if so, it would require an immense amount of machinery to simulate all those cells' chemistry. However, I suspect we'll need far less than that, because our nervous systems must have evolved to be insensitive to lower-level details; otherwise, our brains would rarely work.

Fortunately, we won't need to solve all those problems at once. For long before we are able to make complete "backups" of our personalities, this field of research will produce a great flood of ideas for adding new features and accessories to our existing brains. Then this may lead, through smaller steps, to replacing all parts of our bodies and brains — and thus repairing all the defects and flaws that make presently our lives so brief. And the more we learn about how our brains work, the more ways we will find to provide them with new abilities that never evolved in biology.

The Power of Our Creative and Analytic Abilities

Reposted from: http://edge.org/q2007/q07_16.html
my highlights in blue

BRIAN GREENE
Physicist, String Theorist, Columbia University; Author, The Fabric of the Cosmos

The Power of Our Creative and Analytic Abilities

As I help raise my two year old son, I witness a basic truth familiar to parents through the ages and across the continents — we begin life as uninhibited explorers with a boundless fascination for the ever-growing world to which we have access. And what I find amazing is that if that fascination is fed, and if it's challenged, and if it's nurtured, it can grow to an intellect capable of grappling with such marvels as the quantum nature of reality, the energy locked inside the atom, the curved spacetime of the cosmos, the elementary constituents of matter, the genetic code underlying life, the neural circuitry responsible for consciousness, and perhaps even the very origin of the universe. While we evolved to survive, once we have the luxury of taking such survival for granted, the ability of our species to unravel mysteries grand and deep is awe inspiring. I'm optimistic that the world will increasingly value the power of such rational thought and will increasingly rely on its insights in making the most critical decisions.

Corrective Goggles for Our Conceptual Myopia

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

COREY S. POWELL
Senior Editor, Discover Magazine; Adjunct Professor, Science Journalism, NYU; Author:
God in the Equation: How Einstein Transformed Religion

Corrective Goggles for Our Conceptual Myopia

Broadly speaking, I am optimistic that the world's current crises look terrifyingly large mainly because of our conceptual myopia. It is practically a truism to say that every era tends to regard its troubles as uniquely daunting, but I think that accelerating news cycles make the current generation particularly prone to this error of judgment. Making my best attempt to put on corrective goggles and take the longer view, I see a half-dozen areas where we are on the verge of major advances in our ability to expand our control over our environment and ourselves, in way that will be largely or entirely beneficial.

• I am optimistic that technology will soon show practical ways to eradicate the twin problems of carbon emissions and fossil-fuel scarcity. In the nearer term, carbon dioxide will follow the path of CFCs, acid-rain-causing sulfur oxides, and nearly all automobile tailpipe emissions. Nay-sayers warned that all of these would be difficult and economically disruptive to tackle; in every case, the nay-sayers were roundly proven wrong. Carbon sequestration is the most obvious technology for offsetting carbon emissions. Here's a firm prediction: If the world's leading economies set tough emissions standards for CO2, or establish a serious carbon tax, industry will find astonishingly inexpensive ways to comply within a few years.

• Farther ahead, new energy sources will begin to make serious contributions to the world economy long before fossil fuels run out. My bet is still on fusion energy, despite its perfect, five-decade record of never fulfilling any of its promises. I seriously doubt, though, that commercially viable fusion energy will look anything like the huge and hideously expensive magnetic-confinement test machines (like ITER) now being built or planned. More likely it will take the shape of a compact, laser- or radio-driven linear accelerator using exotic nuclear reactions that spit out protons, not neutrons; send the protons flying through a copper coil and you have direct electricity conversion, with no boiler, no steam, no turbine, no dynamo.

• I am optimistic that we are on the verge of developing the tools to program biological systems as effortlessly as we program digital ones. Synthetic biology, a field spearheaded by George Church, Drew Endy, and Jay Keasling, will be key to attaining this goal—and it is now in transition from theory to reality. Rather than snipping genes from one creature and clumsily inserting them into another, future biotechnicians will consult a master database of DNA sequences and specify the traits they want, whether to insert into an existing organism or to create in a brand-new one designed from the ground up. (A corollary is that these tools will finally allow effective stem-cell therapy, which leads to a related prediction: Thirty years from now, the current agonies over the ethics of stem-cell therapy will look as quaint as the hand-wringing over "test tube babies" in the 1970s.) Synthetic biology in its fully realized form will also be a dangerous weapon. A related part of my optimism is that it—like electricity, like radio, like all genetic research so far—will prove far more useful for positive applications than for negative ones.

• I am optimistic that young adults today will, on average, live to 120 and will remain healthy and vigorous until their final years. Researchers like Leonard Guarente, David Sinclair, and Cynthia Kenyon are zeroing in on the chemical and genetic basis of aging. Immortality is a long way off, but drugs and genetic therapies that hold back age-related diseases are coming soon. Treatments that slow the aging process as a whole will follow closely behind. Ultimately these will lead to a wholesale reordering of the pace of life and the social structures based around certain biological milestones.The child-bearing years may extend into the 60s; people may routinely continue working into their 80s or beyond. With this expanded timeline will come all kinds of new possibilities, including vastly expanded periods of intellectual creativity and a softening of the irrational behaviors that arise from the universal fear of death.

• I am optimistic that the longer life of the body will be accompanied by enhanced powers of the brain. We already live in world where it is getting harder and harder to forget. A simple Google search often revives long-lost trivia, historical experiences, even the names of long-dead relatives. What we have today is but a tiny taste of what lies ahead. Computing power is now so cheap, and wireless communication so effortless, that a person could easily wear a microphone (or even a low-res video camera) at all times and compile a digital database of every word he or she uttered.

In the future, many people will choose to do so; we will all have personalized, searchable databases at our commands. Rapid advances in brain prostheses mean that soon we will be able to access those databases simply by the power of thought. Within a couple decades, the information will be beamed back in a form the brain can interpret—we will be able to hear the playback in much the manner that deaf people can now hear the world with cochlear implants. Vision is slightly more difficult but it too will be reverse engineered. That will undoubtedly give space exploration a tremendous boost. Earthbound scientists will be able to "inhabit" robotic explorers on other worlds, and any interested participant will be able to log on passively to experience the adventure. Humans will venture into space physically as well but at first that will happen primarily for sport, I expect.

• I am optimistic that researchers, aided by longer careers and computer assistance, will crack the great twin mysteries of physics: the nature of gravity and the possibility of other dimensions. Here I'm talking not just about theoretical advances, as may occur at the Large Hadron Collider after it revs up in late '07, that could bolster the theory that gravity, unlike the other forces, has the ability to transmit out of the three dimensions of human experience. I am also talking about a kookier optimism that our discoveries will have practical consequences. It may be possible to build instruments that can sense universes lying outside of our dimensions. It may be possible to manipulate gravity, turning it down where convenient (to launch a rocket, for instance) and cranking it up where desired. It may even be possible to create a new universe as a laboratory experiment—the ultimate empirical investigation of the Big Bang that started our universe.

• Finally, I am optimistic that with all of these intellectual and material achievements will come a science-based spiritual awakening. Back in the 1930s Albert Einstein spoke of a "cosmic religious feeling" and tried to convince the public (with painfully little success) that scientists are every bit as spiritual as are the world's religious leaders. It may not look that way now, but I think Einstein will soon be vindicated. Longer, more connected lives will eat away at the religion of fear, the rudimentary form of faith rooted in anxiety about loneliness and the apparent absoluteness of death.

More important, the next round of scientific discoveries promise a powerful new sense of our connection to the rest of the universe, and even to universes beyond our own. One of the most potent knocks on science is that it, unlike religion, offers no sense of purpose. That has never been true—what greater purpose is there than intellectual exploration, the key trait distinguishing us from the other animals—but now more than ever science has a chance to make its case. It needs to develop more of a communal structure. It needs to develop a humane language, expressing its findings explicitly as triumphs of human achievement. It needs to celebrate our ever-expanding dominion over nature while articulating a humble appreciation that nature is, indeed, where we all came from.

Above all, science needs a face, a representative (or representatives) as charismatic as Pope Benedict XVI or, er, Tom Cruise, who can get rid of all those "it"s in the pervious sentences. Right now, the faces of science are selected by book sales, television specials, and pure self-promotion; its elected leaders, like the heads of scientific societies, rarely function as public figures. Surely there is a better way. Any suggestions?

Making Us/Them Dichotomies Far More Benign

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

ROBERT SAPOLSKY
Neuroscientist, Stanford University, Author, A Primate's Memoir

With The Right Sort Of Priorities And Human Engineering (Whatever That Phrase Means), We Can Be Biased Towards Making Us/Them Dichotomies Far More Benign

A truly discouraging thing to me is how easily humans see the world as dichotomized between Us and Them. This comes through in all sorts of ways —social anthropology, lord of the flies, prison experiments, linguistics (all those cultures where the word for the members of that culture translates into "People," thus making a contrast with the non-people living in the next valley).

As a neurobiologist, I'm particularly impressed with and discouraged by one finding relevant to this. There's a part of the brain called the amygdala that has lots to do with fear and anxiety and aggression. Functional brain imaging studies of humans show that the amygdala becomes metabolically active when we look at a scary face (even when the face is flashed up so quickly that we aren't consciously aware of seeing it). And some recent work—solid, done by top people, independently replicated — suggests that the amygdala can become activated when we view the face of someone from another race. The Them as scary, and the Them being someone whose skin color is real different from our own.

Damn, that's an upsetting finding.

But right on the heels of those studies are follow-ups showing that the picture is more complicated. The "Other skin color = scared activated amygdala = the Other" can be modified by experience. "Experience," can be how diverse of a world you grew up in. More diversity, and the amygdala is likely to become activated in that circumstance. And also, "experience," can be whether, shortly before your amygdala is put through the brain imaging paces, you are subtly biased to think about people categorically or as individuals. If you're cued towards individuating, your amygdala doesn't light up.

Thus, it seems quite plausible to me that we are hard-wired towards making Us/Them distinctions and not being all that nice to the Them. But what is anything but hard-wired is who counts as an Us and as a Them —we are so easily manipulated into changing those categories.

So, I'm optimistic that with the right sort of priorities and human engineering (whatever that phrase means), we can be biased towards making Us/Them dichotomies far more benign than they tend to be now. Say, by making all of us collectively feel like an Us with Them being the space aliens that may attack us some day. Or making the Them to be mean, shitty, intolerant people without compassion.

But, I'm sure not optimistic that we'll soon be having political, religious or cultural leaders likely to move us effectively in that direction. Just to deflate that optimism.

the nature of dark matter, dark energy, the cyclic universe, gravitational waves

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

PAUL STEINHARDT
Physicist; Albert Einstein Professor of Science, Princeton University; Coauthor, Endless Universe: A New History of the Cosmos

Bullish on Cosmology

I am optimistic that there will be a historic breakthrough in our understanding of the universe in the next five years that will be remembered as one of the most significant of the millennium. I would also give better-than-even odds that there will be more than one discovery of this magnitude.

My optimism is sparked by a remarkable coincidence: the simultaneous maturing of several unrelated technologies, each of which could open a new window on the cosmos. Historically, every new technology is a harbinger of great discovery. Consider, then, that at least a handful of major advances will occur within just five years:

• Directly detecting of dark matter:

After decades of gradual progress, physicists will finally build the first detectors sensitive enough to detect dark matter particles directly, if they consist of weakly interacting massive particles (WIMPs), as many physicists suspect.

• Discovering the nature of dark energy:

Although their names sound similar, the only quality dark matter and dark energy have in common is that they are both invisible. Dark matter consists of massive particles that gravitationally attract one another and clump into clouds that seed the formation of galaxies.

Dark energy is gravitationally self-repulsive, so it tends to smooth itself out. When it is the dominant form of energy, as it is today, dark energy causes the expansion of the universe to speed up.The composition of dark energy is one of the great mysteries of science, with profound implications for both fundamental physics and cosmology.

Over the next five years, arrays of novel wide-field telescopes will be constructed that are programmed to rapidly scan large fractions of the sky to search for astronomical phenomena that vary rapidly with time. The arrays will be used to search for distant supernovae (exploding stars), whose brightness and colors can be used to judge the distance and recessional speed of their host galaxies. From these measurements, astronomers can measure precisely the accelerated expansion of the universe, a primary means of distinguishing different theories of dark energy.

At the same time, in the laboratory, physicists will be trying to detect changes in the gravitational force when masses are placed at close proximity or tiny changes in the strength of the electromagnetic force with time, other effects predicted by some theories of dark energy. These measurements will significantly narrow the candidates for dark energy, perhaps identifying a unique possibility.

• Exploring the big bang and the origin of the large-scale structure of the universe:

The conventional wisdom is that the universe sprang into existence 14 billion years ago in a big bang and that a period of exponentially rapid inflationary expansion accounts for its large-scale structure. However, the last decade has seen the emergence of alternative possibilities, such as the cyclic model of the universe.

In the cyclic model, the big bang is not the beginning but, rather, an event that has been repeating every trillion years, extending far into the past. Borrowing ideas from string theory, the cyclic model proposes that each bang is a collision between our three-dimensional world and another three-dimensional world along an extra spatial dimension. Each bang creates new hot matter and radiation that begins a new period of expansion, cooling, galaxy formation and life, but space and time exist before and after the bang.

The large-scale structure of the universe and the pattern of galaxies are set by events that occurred about a cycle ago, before the bang, just as events occurring today are setting the structure for the cycle to come. Although the inflationary and cyclic pictures predict distributions of galaxies, matter and radiation that are indistinguishable, their predictions for the production of gravitational waves in the early universe are exponentially different.

Gravitational waves are ripples in space produced during inflation or near the beginning of a new cycle that propagate through the universe and distort space like undulations traveling through jello. These cosmic gravitational waves are too weak to be detected directly, but experimental cosmologists throughout the world are mounting ground- and balloon-based experiments to search for their imprint on the polarization pattern of cosmic microwave background radiation produced in the first 380,000 years after the bang.

The results will not only affect our view of our cosmic origin, but our future as well. The conventional big bang inflationary theory predicts our universe is headed towards the cold oblivion of eternal expansion—a whimper—but the cyclic model predicts a new hot big bang.

• Direct detecting gravitational waves:

The first window on the universe using something other than electromagnetic waves could be open within the next five years. After decades of developments, the LIGO (Laser Interferometer Gravitational Wave Observatory), with one detector in Livingston, Louisiana, and one in Hanford, Washington, has a plausible chance of directly detecting gravitational waves, beginning a new era in astronomy.

The observatory is designed to detect stlronger gravitational waves than those produced in the early universe, such as waves generated by the violent collision of neutron stars and black holes in our own galaxy. However, this frontier is so fresh and unexplored that there could well be unanticipated cosmic sources of strong gravitational waves to be discovered that could cause us to reassess our understanding of the universe.

• Breakthroughs in fundamental physics and direct production of dark matter:

The Large Hadron Collider at the Center for European Research (CERN) in Geneva, Switzerland, is set to begin operation this year. This facility consists of a powerful particle accelerator that will reproduce collisions of the type that occurred within the first pico-second after the big bang, carrying the investigation of fundamental physics over an important energy threshold where new phenomena are anticipated. For example, physicists hope to discover a spectrum of new "supersymmetric" particles, confirming a key prediction of string theory, and also WIMPs that may comprise the dark matter.

The impact will be profound. As we enter 2007, we understand the composition of less than five percent of the universe; we do not understand how space, time, matter and energy were created; and we cannot predict where the universe is headed. In the next five years, we may witness the historic resolution of one or more of these issues. I have my personal bet on what the individual outcomes will be; but the only prediction I will reveal here is that, with the opening of so many new windows on the cosmos, we are sure to discover something unanticipated and astonishing.

Reforming Scientific and Medical Publishing & Peer Review via the Internet

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

BEATRICE GOLOMB, MD, PhD
Professor of Medicine, University of California, San Diego


Reforming Scientific and Medical Publishing Via the Internet

I am optimistic that the ascendance of open access postings of articles to the internet will transform scientific and medical publishing; and that a number of profound problems—some particular to medical publishing—will be assuaged as a result.

Currently, it can be impossible to gauge the true balance of risks and benefits of medical treatments from a reading of the literature. Frighteningly, this is true too for those doctors who ground their clinical decisions upon a reading of it. I will review some aspects of the problem; and then relay grounds for possible optimism.

First, as is probably true in all fields, bias occurs in favor of existing orthodoxy. This is arguably more troubling in medicine since the orthodoxy is in turn influenced, as has been learned, by the profusion of articles favorable to their products that are ghostwritten by the pharmaceutical industry, or by the for-profit MECCs (Medical Education and Communication Companies) that industry hires for this purpose. These companies in turn pay physicians and pharmacists—including favorably disposed "thought leaders" whom they seek to succor —to be the listed authors, extinguishing any appearance of connection to industry for the favorable views propounded. This provides the appearance that many independent parties are in agreement in their favorable representations of the evidence. Crisply said, advertising is published as though it were science.

These problems are exacerbated by bias arising from direct conflict of interest. Conflict of interest is endemic in medical research; and articles about a class of drug have been shown to be dramatically more likely to be favorable when authored by persons with ties to industry than when authored by persons without such conflicts. Conflicts for authors thus appear to foster submission of industry-favorable articles. Conflicts for reviewers may also foster rejection of industry-unfavorable ones. (As elsewhere, reviewers are drawn from the pool of authors.) Moreover, reviewers are seldom tasked to disclose conflicts, and they remain anonymous, precluding repercussions for biased reviews.

These factors are aggravated, possibly dwarfed, by pharmaceutical company influence on medical publishing—further aligning medical publishing with medical advertising. Medical journals are not the independent arbiters of article quality one might wish. They are businesses and derive their revenue from pharmaceutical company advertising, and from sales to industry of glossy reprints of industry-favorable articles, at inflated prices. For some medical journals, profits reportedly number in the millions, providing high stakes.

At least three former Editors in Chief of major US and British medical journals have penned books decrying the inimical impact of industry influence on medicine. One has to ask why, in medical journals, advertising is accepted (just because it is available for the taking); and whether the journal's bottom line is a proper consideration in dictating what is published, in settings where lives are on the line.

So, whence the optimism? One means to propel optimism is to suggest a tactic that might enable its fruition. Briefly, I suggest that papers be published on the Internet, reviews be submitted by named reviewers; and that others rate (and review) the reviews. Both papers and reviewers receive ratings that are updated on an ongoing basis. While this won't protect against biased submissions, it will protect against biased rejections—and at least enable a voice for original or contrary perspectives.

Until a new systems is worked out, it is probable that more bad science will be released. However the system provides a means for improving poor quality work; and avoiding having to view what remains substandard.

More importantly, more good science may be published—and perhaps, more great science. As Nobelist Sydney Brenner (who famously authored an article entitled "Moron peer review") has observed, many of his co-Nobelists' prize winning work was initially rejected through the review process.

Transformative work by its nature may defy conventional wisdom. One might be drawn to wonder: is there other work that would have revolutionized science and merited a Prize, that languishes unpublished? And that does so because authors at some point ceased to persevere in submission efforts after some number of rejections, or finally deemed the effort to publish futile?

Hark back to the many great discoveries of which we have heard that were initially ridiculed: H. pylori as a contributor to ulcers; handwashing as a means to reduce puerperal fever; the sun as the center around which the earth revolves, to name a few. What might this imply for the possibility that major discoveries may be pilloried into nonpublication by peer review? There is no means to estimate the fraction of Nobel-caliber efforts that achieve publication, as the denominator remains unknowable.

Indeed, the benefits of a new, Internet-based approach may be particularly great for the most important work: work that challenges existing orthodoxy; work that defines a new field and fits no existing journal; work that crosses boundaries to other disciplines—with their own often arbitrary conventions and in-groups; or that demands knowledge from two or more disciplines; science that is ahead of its time, that entails many advances at once or that founds new work on an understanding of relevant material that others do not yet have. Or, too, work that runs counter to vested interest groups—particularly but hardly exclusively in the arena of medicine, where the potent impact of industry influence on information has been the subject of increasing alarm—and where disparities between literature and truth may cost patients' lives.

An instance from mathematics supports the premise that current convention, requiring articles to be published in peer-reviewed journal venues, may inhibit promulgation of at least some of the very most important work. The Poincaré conjecture—a holy grail in mathematics—was recently proved by a Russian mathematician who posted his work on the Internet but refused the bother of submitting his work to a journal. Other cases can be adduced favoring the proposition that some among persons capable of propelling major advances—which often entails rejecting conventions in science—are also constitutionally inclined to reject the conventions, petty obstacles and distractions that attend the current model of scientific publishing. And perhaps they do so with justifiable contempt.

Surely many will defend the current system—not least those who fare well within it, and who benefit disproportionately from it. And surely there will be problems to overcome in the new system. Orthodoxy, in-groups, and interest groups will continue to influence the literature. Those who serve these masters will likely submit negative reviews of articles (and of reviewers) who do not toe the respective party lines. But at least now the contrarian positions will achieve release, reviewers can be held accountable for biased reviews, and unacknowledged conflicts can be exposed in instances when others know of them.

In short, I am optimistic that online publishing, with a review-the-reviewer system akin to that proposed here, will provide more voice and venue for science that may now have the highest need—and the lowest prospect—of being aired.

Shortening Sleep Will Prolong Conscious Life

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

MARCEL KINSBOURNE
Psychologist, The New School; Coauthor, Children’s Learning and Attention Problems

Shortening Sleep Will Prolong Conscious Life

Our life span is extending, but the extended life is a dwindling asset. Who would not prefer to live longer while at their peak? The time we spend asleep contributes little to our lifetime of experience, thought and action. Dreaming doesn't seem to add much. Some brain lesions and monoamine oxidase (MAO) inhibitor medications even completely abolish dreams without making any apparent difference. Could we reduce the duration of sleep (both REM and nonREM) while maintaining its benefits for the brain, whatever they might be? I propose that we do need to sleep, but not as long as we do. The duration of sleep may be an outdated adaptation to prehistoric ecological constraints that no longer exist.

Virtually all vertebrates sleep (and invertebrates at least have quiet time). However, the duration of sleep varies wildly across species, from less than 1 hour to 18+ hours a day. For instance, rodents sleep between 8 and 17 hours, primates between 7 and 18 hours. Elephants and giraffes sleep 3-5 hours, squirrels 16-17 and bats 20 hours. The newborn of most species sleep more of each day than the adults, except that newborn whales and dolphins don't sleep at all. Within a species, the inter-individual variation of adaptively valuable traits is thought to be quite limited. Yet some people, in some families, habitually sleep only 2-4 hours a night, and function well for longer each day. Perhaps constraining the duration of sleep is not an adaptive priority in humans.

Three categorically distinct roles for sleep are: (1) maintaining the neuronal circuitry, (2) fostering learning, (3) keeping the organism out of trouble.

(1) Given its ubiquity among vertebrates and other phyla, any neurometabolic benefit of sleep must be very general and basic. If the needs of the brain determine the duration of sleep, its duration should vary systematically with some fundamental neurological variable, such as absolute or relative size of the brain, its energy utilization, the sophistication of behavioral control, or the need to replenish some key neurotransmitter. No such co-variation appears to exist.

(2) The presumed role of sleep in learning is based on continuing rehearsal. Rather than being an adaptation, the learning benefit may be a fortuitous result of the brain's continuing activity during sleep, while it is receiving no fresh information. Since the neuronal show must go on, recently acquired patterns of firing gain priority and are "rehearsed". Whether the memories are useful or useless, they are automatically rehearsed. In any case, the suggested benefit of sleep for human learning cannot be generalized to species that make a living without learning anything much, and yet require sleep.

(3) The substantial differences between people and the enormous difference between species in how long they typically sleep suggest that sleep also serves a species-specific ecological function. This is sleep's other role; sleep conserves energy and keeps animals out of trouble. It takes the members of each species a minimum time per day to make a living, that is, secure their personal survival and take advantage of any reproductive opportunity. This challenge is met anew every day. On this view, how much of the day is needed to meet adaptive goals determines the duration of the default option of sleep.

Continued activity when the day's housekeeping is done would prolong the animal's exposure to the hazards that lurk in the environment, without contributing further to basic survival and reproductive needs. Many species cannot do anything useful in the dark (and some not in the light). They gain nothing from expending more than basal metabolic energy at that time. The genetic imperative to sleep during a predetermined time of day and for a predetermined duration (or even hibernate), takes care of all that. Thus extended sleep time would be a function of the interaction between the individual and its ecology.

Predators need time for hunting; how much depends on attributes of the predator and the prey, such as speed, strength and population density. Herbivore prey needs a minimum time to graze, depending on the animal's bulk and the accessibility of food. How the remains of the day are spent would depend on how readily a secure haven can be found.

Nature is notoriously conservative, and it conserves the genetically driven imperative to sleep. The imperative to sleep is subjectively experienced as antecedent sleepiness, and the fatigue and dysphoric feeling after too little sleep. My thesis is that these feelings do not arise unavoidably from the economy of the brain, but are genetically imposed adaptations. Should a species' ecology undergo radical change, and making a living become sharply easier or more difficult, natural selection will in time reshape sleep duration accordingly.

However, human culture evolves too quickly. Since artificial lighting was introduced, the dark no longer constrains what people can do. Since human activities are oriented as much to future as to immediate goals, all hours of the day have become potentially useful. Further, we have more effective means to secure ourselves than curling up in a quiet place and sleeping. So if a sizeable portion of the adaptation to sleep has the role of a security saving placeholder, then it would be safe to relax that portion of the sleep constraint.

The dictatorial "sleep genes", when identified, need to be modified to require a shorter sleep duration, and the circadian clock genes need to be reset. Will the state of genetic engineering become sufficiently advanced to make this prospect, though less than a sure thing, more than a pipe dream? The good news comes with the fruit fly's sleep, which is uncannily like ours; a mutation in a gene called Shaker reduces the fly's natural sleep duration by two-thirds, from about 12 to about 4 hours within 24, without detriment to the fly's well-being. The bad news is that these mutated flies don't live long. Nonetheless, I am optimistic.

The Energy Challenge

Reposted from: http://edge.org/q2007/q07_15.html
my highlights in blue

LORD (MARTIN) REES
President, The Royal Society; Professor of Cosmology & Astrophysics; Master, Trinity College, University of Cambridge; Author, Our Final Century: The 50/50 Threat to Humanity's Survival

The Energy Challenge

A few years ago, I wrote a short book entitled Our Final Century? I guessed that, taking all risks into account, there was only a 50 percent chance that civilisation would get through to 2100 without a disastrous setback. This seemed to me a far from cheerful conclusion. However, I was surprised by the way my colleagues reacted to the book: many thought a catastrophe was even more likely than I did, and regarded me as an optimist. I stand by this optimism.

There are indeed powerful grounds for being a techno-optimist. For most people in most nations, there's never been a better time to be alive. The innovations that will drive economic advance —information technology, biotech and nanotech—can boost the developing as well as the developed world. We're becoming embedded in a cyberspace that can link anyone, anywhere, to all the world's information and culture—and to every other person on the planet. Creativity in science and the arts is open to hugely more than in the past. 21st century technologies will offer lifestyles that are environmentally benign—involving lower demands on energy or resources than what we'd consider a good life today. And we could readily raise the funds - were there the political will—to lift the world's two billion most deprived people from their extreme poverty.

Later in this century, mind-enhancing drugs, genetics, and 'cyborg' techniques may change human beings themselves. That's something qualitatively new in recorded history—and it will pose novel ethical conundrums. Our species could be transformed and diversified (here on Earth and perhaps beyond) within just a few centuries.

The benefits of earlier technology weren't achieved without taking risks—we owe modern aviation, and modern surgery, to many martyrs. But, though plane crashes, boiler explosions and the like were horrible, there was a limit to just how horrible —a limit to their scale. In our ever more interconnected world, where technology empowers us more than ever, we're vulnerable to scary new risks—events of such catastrophic global consequences that it's imprudent to ignore them even if their probabililty seems low.

One set of risks stems from humanity's collective impact. Our actions are transforming, even ravaging, the entire biosphere —perhaps irreversibly—through global warming and loss of biodiversity. Remedial action may come too late to prevent 'runaway' climatic or environmental devastation.

But we also face vulnerabilities of a quite different kind, stemming from unintended consequences (or intended misuse) of ever more empowering bio and cyber technology. The global village will have its village idiots.

The risks are real. But, by making the right collective choices we can alleviate all these hazards.

Among such choices, my number-one priority would be much-expanded R and D into a whole raft of techniques for storing energy and generating it by 'clean' or low-carbon methods. The stakes are high—the world spends nearly 3 trillion dollars per year on energy and its infrastructure. This effort can engage not just those in privileged technical envonments in advanced countries, but a far wider talent pool Even if we discount climate change completely, the quest for clean energy is worthwhile on grounds of energy security, diversity and efficiency.

This goal deserve a priority and commitment from governments akin to that accorded to the Manhattan project or the Apollo moon landing. It should appeal to the idealistic young—indeed I can't think of anything that could do more to attract the brightest and best of them into science than a strongly proclaimed commitment, from all technologically-developed nations, to take a lead in providing clean and sustainable energy for the developing and the developed world.

Research in Biology and Medicine Will Provide the First Effective Treatments for Many Diseases

Reposted from: http://edge.org/q2007/q07_14.html
my highlights in blue

IAN WILMUT
Biologist; Cloning Researcher; Roslin Institute, Edinburgh; Coauthor, The Second Creation


Research in Biology and Medicine Will Provide the First Effective Treatments for Many Diseases

I am optimistic that during this new century research in biology and medicine will provide the first effective treatments for many diseases, although we cannot predict when they will become available and in some cases it may take several decades.

A greater number of new treatments may well be developed than was introduced during the twentieth century. I make this judgment not only on the basis of a simple extrapolation from developments in the past, but also on a consideration of the new understanding that is being established at present and of the revolutionary techniques that are emerging. Consider as examples the potential value of the genome mapping projects, stem cells and the techniques to assess many thousand small molecules for their ability to have desired effects upon human cells in laboratory test systems. All of this is underpinned by rapidly advancing molecular biology providing essential understanding of the mechanisms that regulate cell function.

Entirely new opportunities are being provided by the mapping of the genomes of people, other mammals and a variety of infectious agents that cause human diseases such as malaria. Although we now know the entire genetic sequence of a small number of people and have new estimates of the number of genes in the human genome, we have a great deal to learn about the role of specific gene products and the mechanisms that ensure appropriate functioning of the genes. Those actively involved in this aspect of research believe that this stage in the development of human genetics will be far more demanding and take far longer than the mere mechanical reading of the sequence. However, it will in the end be very rewarding.

It has been appreciated for sometime that some human diseases result directly from differences in DNA sequence, but despite considerable research efforts only a small number of causative mutations have been identified. Modern, rapid sequencing techniques will greatly facilitate these analyses in the future. However, it is likely that in a far greater number of cases sequence differences make people comparatively vulnerable to disease, but are not directly causative of that disease. These associations will only be revealed by large-scale studies in which the genomes of hundreds, perhaps thousands, of people are determined while also monitoring the incidence of diseases in that population. This may make it possible to provide accurate warnings to people that they are vulnerable to specific diseases, while also offering advice on life style and medication to reduce that risk.

In time information of this kind may also greatly increase the accuracy of selection of appropriate medication for particular patients. At present an adverse response to medicines is a major cause of death or the need for hospital treatment, even if the medicine is appropriately prescribed and taken. This is because of differences between people in the response to drugs. It is probably fanciful to think of tailoring medications for each person, because this implies a full knowledge for every person of their likely response to and metabolism of every compound that might be considered as a medicine. However, it does seem likely that understanding of these mechanisms will lead to improved design and selection of new compounds.

A great deal has been made of the potential use of stem cells or their derivatives to replace those lost in degenerative diseases that reflect the death or malfunctioning of specific cell populations. Diseases that are considered suitable for treatment in this way include Parkinson’s disease and other neurodegenerative diseases, juvenile diabetes, spinal cord injury, liver damage resulting from hepatitis or solvent abuse. In their haste to consider this use of stem cells, the potential benefit of using such cells for drug discovery and toxicology studies is overlooked. Drug assessment will be markedly more accurate as cells become available that are representative of the critical tissues of a variety of different people.

In some cases, the cells will be genetically identical to those of patients with an overt inherited condition. There are a number of potential sources of such cells, but at present the most likely seem to be embryo stem cells because they are known to have two key characteristics. They have the ability to form all of the different tissues of an adult and they are able to multiply almost indefinitely in the laboratory. In practice this means that researchers will have the opportunity to study genetically identical cell populations again and again over a period of years and to examine their response to potential drugs.

This is not known to be the case for any cells taken from adults. The gene sequence known to be associated with a specific disease may be introduced into existing cell lines to create a population of cells that would be expected to exhibit the characteristics of the disease. Alternatively, it may be possible to use somatic cell nuclear transfer from a patient with an inherited disease to obtain embryo stem cell lines having that characteristic even if the causative mutation is not known.

In some cases similar research may be provide an understanding of the molecular mechanisms that regulate the function of stem cells in a tissue. In time, this may make it possible to stimulate the replacement of damaged or lost cells from endogenous stem cell populations in the patient. There would be many practical advantages in being able to use this drug-based approach to cell therapy. The alternative will be to produce cells of the required type from embryo stem cells, in sufficient number that they can replace the lost cells. When they have reached the appropriate stage of their maturation these must then be inserted into the damaged tissues in such a way that they are able to integrate fully into that tissue and restore normal function. While it is likely that each approach to cell therapy will be used for some diseases, there are clearly many potential benefits to a drug based therapy.

I am optimistic that research has the potential to provide these new opportunities, and many more not described. However, I am concerned that society tends to be frightened by innovations while taking for granted the treatments that are available. We would make the most rapid progress if we recognized that it was earlier research that led to the present treatments and if we were excited by the challenges and opportunities that will arise from new research.